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Abstract

Due to physical and biological constraints and requirements on the minimum resolution
and signal-to-noise ratio (SNR), the acquisition time is relatively long in magnetic
resonance imaging (MRI). Consequently, a limited number of pulse sequences can be run
in a clinical MRI session because of constraints on the total acquisition time due to
patient comfort and cost considerations. Therefore, it is strongly desired to reduce the
acquisition time without compromising the reconstruction quality. This thesis concerns
under-sampled reconstruction techniques for acceleration of MRI acquisitions, i.e.,

parallel imaging and compressed sensing.

While compressed sensing MRI reconstructions are commonly regularized by penalizing
the decimated wavelet transform coefficients, it is shown in this thesis that the visual
artifacts, associated with the lack of translation-invariance of the wavelet basis in the
decimated form, can be avoided by penalizing the undecimated wavelet transform
coefficients, i.e., the stationary wavelet transform (SWT). An iterative SWT thresholding
algorithm for combined SWT-regularized compressed sensing and parallel imaging
reconstruction is presented. Additionally, it is shown that in MRI applications involving
multiple sequential acquisitions, e.g., quantitative T1/T2 mapping, the correlation
between the successive acquisitions can be incorporated as an additional constraint for

joint under-sampled reconstruction, resulting in improved reconstruction performance.

While quantitative measures of quality, e.g., reconstruction error with respect to the fully-
sampled reference, are commonly used for performance evaluation and comparison of
under-sampled reconstructions, this thesis shows that such quantitative measures do not
necessarily correlate with the subjective quality of reconstruction as perceived by
radiologists and other expert end users. Therefore, unless accompanied by subjective
evaluations, quantitative quality measurements/comparisons will be of limited clinical

impact. The results of experiments aimed at subjective evaluation/comparison of different
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under-sampled reconstructions for specific clinical neuroimaging MRI applications are

presented in this thesis.

One motivation behind the current work was to reduce the acquisition time for relaxation
mapping techniques DESPOT1 and DESPOT?2. This work also includes a modification to
the Driven Equilibrium Single Pulse Observation of T1 with high-speed incorporation of
RF field inhomogeneities (DESPOT1-HIFI), resulting in more accurate estimation of T1
values at high strength (3T and higher) magnetic fields.

Keywords- Magnetic resonance imaging, Sparse recovery, Compressed sensing, Parallel
imaging, Quantitative MRI, Driven equilibrium single pulse observation of T1/T2
(DESPOT1/DESPOT?2), Clinical MRI quality assessment
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1 Introduction

Patient comfort and cost considerations limit the total acceptable acquisition time in
magnetic resonance imaging (MRI). On the other hand, it is often desired to have high-
resolution images with high signal-to-noise ratio (SNR). However, the SNR in MRI is
proportional to the voxel volume and the square root of the acquisition time [1].
Consequently, this requirement limits the number of pulse sequences that can be run on a
patient in a clinical examination without the scan time becoming excessive. Therefore, it
is strongly desired to reduce the acquisition time without compromising the resolution

and the SNR.

Furthermore, rapid acquisitions are often desirable to reduce motion artifacts, particularly

in applications such as pediatric imaging or cardiac MRI.

There exist several MRI applications that require multiple acquisitions of an object, e.g.,
T1/T2 mapping [2]-[5], in which maintaining an acceptable acquisition time, while also
maintaining an acceptable resolution and SNR, may become of particular concern. For
example, a typical study for surgical treatment of epilepsy with image guidance may
consist of several acquisitions for T1 and T2 mapping, diffusion tensor imaging (DTI),
and fMRI, in addition to regular clinical acquisitions. While each of these datasets can be
acquired in about 10 minutes, which is acceptable for an MRI scan if it was the only
pulse sequence to be run, once other acquisitions are added the total time may become
excessive. Indeed, this work was partly motivated by the excessive pre-operative image

acquisition time for the surgical treatment planning of epilepsy.

Accelerating MR acquisitions has been a primary goal of research since the introduction
of this modality. Pulse sequences have been modified ever since in an effort to shorten
the acquisition time. The simplest modification is to shorten the repetition time, TR, by
using stronger gradients (and small flip angles) [6]. However, not only is the gradient

strength limited by engineering limitations but also there are physiological considerations
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associated with the rate of switching of the gradients due to the possibility of peripheral

nerve stimulation [7].

(a) Gradient recalled echo (GRE) (b) Echo planar imaging (EPI)

Figure 1.1- A typical Gradient Recalled Echo (GRE) brain image and its echo train
version known as Echo Planar Imaging (EPI). The entire EPI image is acquired with a
single echo train. The images illustrate quality losses due to echo train imaging. (Figure

from [7] with permission from the publisher doi:10.1088/0031-9155/52/7/R01)

Another complementary approach is the acquisition of more than one phase-encode line
after each excitation during each repetition time. Such pulse sequences are commonly
known as echo train sequences [8]-[14]. While echo train imaging results in impressive
reductions in the acquisition time, these reductions are often achieved at the expense of
compromising the contrast and in some cases introducing image distortions. For example,
Figure 1.1 shows a brain image acquired using a Gradient Recalled Echo (GRE) pulse
sequence and an echo train version of this pulse sequence, known as Echo Planar

Imaging (EPI). The images illustrate the loss of quality with echo train imaging.
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Figure 1.2- Pictorial illustration of under-sampled k-space reconstruction. Reconstruction
by simple zero-padding in k-space results in aliasing artifacts in the spatial domain

image. Nevertheless, the missing k-space data can be interpolated based on a priori

Another class of accelerating approaches reduces the acquisition time by acquiring under-
sampled data and reconstructing the missing data based on a priori knowledge or
constraints on the data. The procedure is pictorially illustrated in Figure 1.2. Parallel

imaging [7] and Compressed sensing [15], [16] are two major categories of such
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approaches, where the former is based on the knowledge of the coil sensitivity profiles
and the latter is based on the sparsity of the image in a transform domain. In this thesis

both approaches are considered, individually and in combination.

The aforementioned concepts of compressed sensing and parallel imaging are briefly
introduced in sections 1.4 and 1.5, respectively. Before that, however, due to the
importance of a general knowledge of the physics of MRI for following the rest of this

thesis, a brief introduction to MRI physics is provided in sections 1.2 and 1.3.

1.1 Thesis objectives

One of the main objectives of this work is to introduce under-sampled MRI
reconstruction techniques for accelerating MRI acquisitions. To this end, various
reconstruction constraints are employed, depending on the application, to regularize the

inverse problem. The following constraints are particularly considered:

1. Sparsity in a transform domain: Sparse representations of MR images can be
obtained in appropriate transform domains. A reconstruction can therefore be
obtained by regularizing the inverse problem by penalizing the sparsity in the
sparse transform domain (Compressed sensing).

2. Coil sensitivity profiles: If data are acquired with multiple receive coils, the
sensitivity profiles can be used for under-sampled reconstruction with Parallel
imaging. In multiple-coil acquisitions the best reconstruction performance is
achieved by simultaneously incorporating coil sensitivities and sparsity
constraints.

3. Structural similarity between multiple sequential acquisitions: In applications
involving multiple sequential acquisitions, e.g., Quantitative MRI: T1/T2
mapping, the structural similarity between sequential acquisitions can be
incorporated as an additional reconstruction constraint to achieve improved

reconstruction performance.
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Furthermore, an important aspect of under-sampled reconstructions is the assessment of
the reconstruction quality. While quantitative quality measures such as the reconstruction
error with respect to the fully-sampled reference or the signal-to-noise ratio (SNR) are
commonly used, these measures do not always correlate with the perceptual quality
judgment of radiologists and other end users with respect to employing the images for
diagnostic purposes (see chapter 5). Therefore, unless accompanied by subjective
measurements, such quantitative measures are of limited clinical impact. Subjective
quality assessment of under-sampled reconstructions is another major objective of this

thesis.

1.2 Introduction to magnetic resonance imaging (MRI)
1.2.1 Basic nuclear magnetic resonance (NMR) physics

Magnetic resonance imaging is based on the interaction of a nuclear spin with external
magnetic fields. All atomic nuclei consist of nucleons (protons and neutrons) that possess
a quantum mechanical property called spin. If the nucleus consists of an odd number of
nucleons, the nuclear spin is greater than zero, the nucleus is NMR-active, and a
magnetic dipole moment, or simply a magnetic moment, can be associated with the
nucleus. The dominant nucleus in biological tissues is the proton in hydrogen. The
interaction of the NMR-active nuclei, e.g., the proton, with the external magnetic field
results in the precession' of the spin about the external field direction, which is called the

Larmor precession.

The Larmor precession occurs at a specific frequency, called the Larmor frequency,
which depends on the strength of the external magnetic field and the characteristics of the

nucleus:

wo = YBy (L.1)

! By definition, precession is the circular motion of the axis of rotation of a spinning body
around another fixed axis caused by the application of a torque in the direction of
precession [17].
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where w, is the Larmor frequency, B, is the external magnetic field, and y is a constant
called the gyro-magnetic ratio, which depends on the nucleus involved. y = 2.68 X

108rad/s/Tesla for hydrogen [17].

In a classical picture, the precession of the spins around the magnetic field occurs out of
phase with each other in the presence of a static external magnetic field, By. This out-of-
phase precession results in a net macroscopic magnetization in the direction of the
external magnetic field, i.e., the longitudinal direction, since the transverse magnetization
components cancel out due to the out-of-phase precession’. This is usually referred to as
the equilibrium magnetization, denoted by M,,. Note that, by definition, magnetization is
a vector field equal to the volume density of permanent or induced magnetic dipole

moments in a magnetic material.

To detect this magnetization, it can be rotated away from its alignment along the B, axis
by applying a radio frequency (RF) magnetic field for a short time, i.e., an RF pulse, with
its frequency tuned to the Larmor frequency, i.e., the resonance frequency (Figure 1.3).
The RF pulse is produced by an RF transmit coil, which is often used as the receive coil
as well. The RF magnetic field is also referred to as the B, field. The duration and power

of the RF pulse determines the flip angle by which the magnetization is rotated.

The application of the RF pulse tilts the net macroscopic magnetization away from the B,
direction, resulting in a net (macroscopic) transverse magnetization component
precessing at the Larmor frequency. The produced magnetic field precesses along with
the magnetization, yielding a changing flux in the receive coil and therefore a current

based on the Faraday’s law.

* The B, direction is referred to as the longitudinal direction and is often assumed to be in
the direction of the z-axis. Perpendicular to the B, direction is the transverse plane, i.e.,
the xy-plane.
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Figure 1.3- The magnetization vector is tilted away from the longitudinal equilibrium in
the B, direction towards the transverse plane by the application of an RF pulse, By, at the

Larmor (resonance) frequency.

1.2.2 Spatial encoding

The goal of imaging is to correlate a series of signal measurements with the spatial
locations of the various sources [17]. This can be achieved by the addition of a spatially
changing magnetic field across the sample to produce a signal with varying frequency

components according to

w(x) = yB(x) (1.2)

where x denotes the spatial coordinate along the direction of the gradient of the field.
This makes it possible to localize the source by encoding the source location into the
frequency or phase. This encoding is carried out by constructing gradient coils that

change the original filed B, linearly in the gradient directions (Figure 1.4). That is,

B(x) = By + xG,  (1.3)
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where G, is the gradient of the field in the direction of the applied gradient field.

Therefore:

w(x) = yBy + yxG, (1.4)
?)FOJ Aw

Or, noting that the first term, ¥ By, is a constant independent of the location, equation 1.4

can be expressed in terms of a continuous accumulation of phase difference:

t t
AB(x,t) = [ Aw(x, t")dt" = yx [ G (t")dt’ (1.5)
Constantfield Linearly varying field
n N A A AA A A 3 M I3 n M A
wy wy wg — Aw wy + Aw

L 2
L 2

Figure 1.4- Frequency/phase encoding of the image position by the application of a linear
gradient magnetic field. Left: B, only- all nuclei precess at the same frequency. Right:

By + xG,- the precession frequency is linearly dependent on the position.
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As described later in section 1.2.3, such linear encoding simplifies the mapping between

the signal space and the image position space to taking a Fourier transform.

The Fourier transform of the detected signal is a projection of the object onto the x axis.
Therefore, a projection reconstruction of the object can theoretically be obtained by

repeating the acquisitions while applying gradients at different orientations.

1.2.3 K-space

The frequency domain is often referred to as k-space in the MRI literature. While based
on the above discussion it is possible to acquire projections through the object by
changing the direction of the gradient and reconstruct the image similar to computed
tomography (CT)’, in practice the image is often reconstructed by filling in a grid of 2D

Fourier data and taking the inverse Fourier transform:

Assume a 2D grid in the xy direction, corresponding to the 2D Fourier data of a 2D
image or a slice of the 3D object. As described above, a phase-encoded signal can be
acquired by applying a gradient in the x direction during the signal acquisition.
Nevertheless, while this phase encoding results in localization in the x direction, the
detected signal does not contain any localization information in the direction of the y

coordinate.

Consider applying a second gradient G,, along the y axis (perpendicular to the x
direction) for a short period just before G,. The resonance frequency of the nuclei will be
altered depending on their position along the y axis, which results in the accumulation of
a phase difference during the period that G,, is on. The phase incurred depends on the
strength of the gradient and the time during which G,, was on, and can provide

localization information along the y direction. The signal is then “read” while G, is on.

3 In theory, projection reconstruction can be done either using filtered-back projection or,
based on the central section theorem, by re-binning the frequency domain data and taking
an inverse Fourier transform.
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The direction of G,, is often called the phase-encode direction and the direction of G, the
readout direction.

The received RF signal is the superposition of all the precessing magnetization vectors

within the sensitivity range of the RF coil:

S(®) = [, prane M) PF Dddxdy  (1.6)

Note that what can be measured is the difference in phase, A@, rather than the absolute
phase. Similar to equation (1.5), A@ can be written in terms of the spatial location and the

magnetic gradients:
AB(x,y,0) = [y yxG(£)dt' + [[yyGy(t)de  (1.7)

Letting k,(t) =y fot G (t)dt',and k), (t) =y fot Gy (t")dt’, equation (1.6) becomes:

SO = I, prane M YT R dxdy (1.8)

which is essentially the Fourier transform of m(x, y). In other words, the RF signal gives

us a point in M (kx, ky)— the Fourier transform of m(x, y).

As described in section 1.2.5, by changing k, and k,, through manipulation of the

gradients, all the points on k-space can be filled.

1.2.4 T,/T, contrast

Once the RF pulse is turned off, the spins return to the lower energy state, i.e.,
equilibrium. Macroscopically, this is modeled by an exponential recovery of the

longitudinal component towards the equilibrium state:

M,(t) = MZ(O)e_T_tl + My (1 — e‘T_tl) (1.9)

where M, is the longitudinal magnetization component.
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Figure 1.5- The RF signal is usually sampled while the G, gradient is on, therefore filling

in k-space point along the readout (k) direction.

Furthermore, the spin-spin interactions cause slight differences in the net magnetic field,
which result in different precession frequencies and, consequently, dephasing of the

spins, which, in turn, results in a decay of the transverse magnetic field. The transverse

decay also follows an exponential curve:

M,y (t) = M,y (0)e™™ (1.10)

where M,,, is the transverse magnetization component.
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T, and T, are the longitudinal and transverse relaxation time constants, also known as the

spin-lattice and spin-spin relaxation time, respectively.

These time constants are intrinsic properties of the material and, since the signal is read
during the relaxation, the difference in the relaxation time constants in different tissues
produces some contrast. In general, depending on the imaging pulse sequence, one
relaxation may become more dominant in terms of producing the contrast, and therefore

the image may be T;- or T,- or M weighted.

1.2.5 Magnetic resonance imaging

As described previously, K-space is filled by sampling the RF signal while changing k,
and k,,. The samples are usually acquired while k, is on, therefore filling in k-space

points along one line in the readout (k, ) direction (Figure 1.5).

To advance though different location in the phase-encode (k,,) direction, a gradient in the
y direction, G, is usually applied prior to readout. With the duration of the gradient pulse
held constant, the phase-encode position is controlled by varying the strength of the

gradient (Figure 1.6).

Typically after each RF excitation pulse, one or more k-space lines are acquired in the

readout direction. The entire k-space is filled by repeating this sequence.

1.2.5.1 Pulse sequence parameters

As an example, Figure 1.7 shows a schematic diagram of an RF spin echo pulse sequence
[18], in which 90° excitation pulses are used. The time between consecutive excitation
pulses is often referred to as the repetition time (TR). Note that in addition to the spin-
spin interactions described in section 1.2.4, local inhomogeneities of the main magnetic
field can result in additional dephasing. The overall effect results in a larger time constant
T;, often called the apparent T,. Nevertheless, the latter effects can be reversed by the

application of a 180° RF pulse, resulting in the formation of a spin echo. The time from
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the excitation pulse (the 90° pulse in this case) to the formation of an echo is called the

echo time (TE).

Figure 1.6- With the duration of the gradient pulse held constant, the phase-encode
position is controlled by varying the strength of the gradient.

In addition, any magnetic field gradient results in additional dephasing of the spins,
which can be counteracted by the application of an inverse gradient, resulting in the
formation of a gradient echo (Figure 1.8). An RF spin echo pulse sequence is deliberately

designed so that the RF spin echo and the gradient echo occur simultaneously.
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Figure 1.8- Schematic illustration of the formation of a gradient echo.

Not all pulse sequences involve a 180° RF refocussing pulse, in which case the decay of

the measured signal occurs with time constant T,

The reader is referred to [17], [19], [20] for a more thorough explanation of different

aspects of magnetic resonance imaging.

1.3 Quantitative MRI: T1/T2 mapping

While the contrast in an MR image may be due to the difference in T;/T, contrast of
different tissues, the intensity image does not necessarily provide the quantitative values
of the relaxation time constants T;and T,. Having a quantitative map of the relaxation
time constants T;and T, has immediate clinical applicability [21]. Such quantitative

T;/T,maps are often estimated by acquiring multiple points on the exponential
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recovery/relaxation curves through multiple acquisitions, and fitting an exponential
function onto the acquired data points [22]. This procedure is usually referred to as
T,/T,mapping.

1.3.1 DESPOT1/DESPOT2 T;and T,mapping

Although several T;/T,techniques have been proposed [2]-[4], [22], [23], the T;and
T,mapping techniques DESPOT1 and DESPOT?2 developed by Deoni et al [5], which are
currently the most efficient quantitative mapping techniques [24], were particularly
considered in this thesis. Since DESPOT]1 is employed in the future chapters, here a brief

overview is provided below.

1.3.1.1 DESPOT1

DESPOT1 T;mapping is based on the acquisition of two spoiled gradient recalled
(SPGR) images at the optimal flip angles [5].

The SPGR signal intensity, Sgpgg, is @ function of the longitudinal relaxation time, T;,

repetition time, TR, flip angle, a. At steady state:

_ p(1-Ey)sina

SSPGR = ] 5 cosm (L.11)

1-E;cosa

where E; = exp (— ;—R> , and p is a factor proportional to the equilibrium longitudinal
1

magnetization, M.

By holding TR constant and incrementally increasing «, a curve characterized by T; is

generated, which can be represented in a linear form (Y = mX + b) as:

SSPGR __ Elsspi + p(l — El)(l.IZ)

sina tana

The slope, m, can be estimated by linear regression, from which T; can be extracted:

T, = —TR/In(m) (1.13)
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It has also been suggested that improved T; accuracy can be achieved using weighted

linear regression [25], [26].

1.4 Parallel imaging

Parallel imaging is the use of multi-coil arrays (also called phased array coils) to
accelerate the MRI acquisition by acquiring under-sampled k-space data and filling in the
un-sampled points using the redundant data acquired by multiple coils and the coil

sensitivity profiles.

Parallel imaging techniques can be divided into two categories based on whether the
reconstruction takes place in the spatial domain or in the Fourier domain, i.e., in k-space.
SENSE (Sensitivity encoding) [27] is an example of the former where coil sensitivity
profiles are used to unfold under-sampling aliasing artifacts in the spatial domain after
taking the Fourier transform, and GRAPPA (generalized auto calibrating partially
parallel acquisition) [28] exemplifies the latter where coil sensitivity profiles are used to

fill in the missing k-space data before taking the Fourier transform.

Another categorization of parallel imaging techniques is based on whether the
sensitivities are measured directly or indirectly. In the direct approach, coil sensitivities
are explicitly calculated from the calibration data. In the indirect approach, however, coil
sensitivities are not explicitly calculated but rather the calibration data are used to
determine weights based on which the unknown k-space samples can be estimated from
the known samples. This inevitably requires a k-space based reconstruction. GRAPPA is
an example of calibration based on indirect sensitivity measurement. SENSE and
SMASH (simultaneous acquisition of spatial harmonics) [29] exemplify direct sensitivity

measurement where in SMASH reconstruction takes place in k-space.

1.4.1 SENSE

In SENSE coil sensitivities are directly used to unwrap the under-sampling aliasing

artifacts in the spatial domain. In the simplest form, k-space is under-sampled by
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increasing the distance between adjacent k-space lines in the phase-encode” direction by a
factor R (the acceleration ratio), while maintaining the maximum extent of k-space. Since
field of view is inversely proportional to line spacing in k-space, this results in an R fold
reduction in field of view resulting in an aliased image. Mathematically, the under-

sampled image is a superposition of shifted replicas of the original image:
[Aliased(y 3y = YR 1(x,y + nL/R) (1.14)
where L is the original field of view.

With phased array coils, the signal produced by each coil is the signal from the object, p,

modulated by the coil sensitivity, ¢;:

si(xy) = c(x,y)plx,y)  (1.15)

Therefore, assuming N, receive coils and acceleration factor of R, the signal measured by

each coil is given by:

(R—1)L (R - 1)L
si(6y) = (el y) + -+ aloy +—F—)ploy +—F)
(R—-1)L (R - 1)L
sn.(x,y) = ey, (6, ¥)p(x,y) + -+ oy (x,y + —g Pyt ——p)
(1.16)
Or in matrix form:
s=cp (1.17)

Figure 1.9 pictorially shows equations (1.16) (or (1.17)) for two coils with R = 2.

4 Based on the discussion in section 1.2.3, in practice it is not possible to move from one
readout (k, ) position to another without passing through the intervening positions and,
therefore, k-space under-sampling is carried out in the phase-encode (k,, ) direction only.
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c1(xy) p(x,y)

52(x,) oy P ey +3) Py +y)

Figure 1.9- Pictorial illustration of equation (1.16) for two coils and R = 2. Each point on
the aliased image for each coil (left column) is the superposition of the corresponding
point on the original image modulated by the coil sensitivity (middle column) and a point

at half of field of view, L/2, shift (right column).

In general, equations (1.16) or (1.17) form a system of linear equations, which can be

solved for p provided N. > R.

1.4.2 GRAPPA

In GRAPPA calibration data are used to obtain a kernel relating k-space points on each
coil to neighboring points over all coils. This kernel is then used to estimate un-sampled

points based on the neighboring sampled points.

Calibration data are obtained integral to the scan (and therefore called auto-calibration)
often by acquiring fully-sampled data at the center of k-space, amounting to a low
resolution fully-sampled acquisition, for all coils. The kernel, consisting of reconstruction

weights w, is obtained based on the following expression:

www.manaraa.com



Page |19

sj(kx, ky, + mAky) =X Xa2pw(,l,a,b,m)s;(ky +alky,k, + bR Ak,) (1.18)

The size of the kernel is chosen by the user. A larger kernel results in increased
estimation accuracy at the expense of longer computation time. Figure 1.10 shows a

GRAPPA reconstruction with a 3x2 kernel.

Coil 2

Coil 1

EXX:

|

RER
a

\ B

Figure 1.10- Pictorial illustration of GRAPPA reconstruction with two coils and R = 2.
Auto-calibration data are shown in red. Blue represents sampled k-space data points and
unsampled points are shown in grey. Once the kernel weights are found based on the

auto-calibration data (red arrows), they can used to fill in the missing data based on the

neighboring sampled points (black arrows). In this example a 3x2 kernel is used (red

box).

www.manharaa.com




Page |20

1.5 Compressed sensing

Many natural images, including MR images, are compressible based on their sparsity in a
transform domain. In other words, there exist transform domains in which a large number
of the transformation coefficients are zero or negligibly small and the energy of the image
is concentrated in a few large coefficients. The small coefficients can be discarded
without noticeable loss in the quality of the image and the image can be represented by a
noticeably smaller number of coefficients (compression). Such transform-domain sparsity
has been commonly used as regularization constraint for under-sampled MR imaging
[15], [16]. These techniques are commonly known as compressed sensing (CS) [30],

[31].

In traditional compressed sensing, a convex norm” is minimized constrained by
adherence to sampled k-space data. Traditional sparse reconstruction problems are often

formulated as an optimization problem:
ming~ [[Yf*|y, st [UsFf* = Ell,, < € (1.19)

Where 1 denotes a sparsifying transform, f* the reconstructed image, F the Fourier
transform, Uy the under-sampling operation in the Fourier domain, and F, the observed
or sampled k-space data. The [; norm is often chosen as it is convex and promotes
sparsity. In the absence of noise, and assuming sufficient sparsity in the underlying
image, the solution to this problem is equivalent to minimizing the [, pseudo-norm [32].
Frequently, total variation, the [; norm of the finite differences, is also included as

another convex cost function [33]:

mings [f*ll, + aTV(F) st lUFf* = Fll, < € (1.20)

> In a Euclidean space, an object is convex if for every pair of points within the object,
every point on the straight line segment that joins the pair of points is also within the
object.
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Many techniques have been used for solving these minimization problems including
interior point methods [34], conjugate gradient [15] and iterative soft thresholding [35].
More theoretical discussions on the application of iterative soft and hard thresholding for
solving optimization problems can be found in [35]—[37]. Furthermore, projections onto
convex sets (POCS) [38] algorithms have also been used to find the solution to this

problem [39].

Traditional POCS methods solve equation (1.19) by iteratively projecting the solution
onto convex sets in the Fourier and wavelet domains, where consistency with the
acquired k-space data and the wavelet sparsity are respectively re-enforced. Wavelet
sparsity is often re-enforced through the convex soft thresholding. In chapter 2 a similar
approach is used with stationary wavelet transform (SWT) [40], [41], which provides

superior reconstructions compared to the regular decimated wavelet transform (DWT).

POCS algorithms have been used for image restoration from partial data with nonlinear
constraints [42]. In [39], [43] the authors propose POCS-based parallel imaging MRI
reconstruction algorithms, which also allow the integration of additional constraints,

where in [39] the authors explicitly explore the -wavelet regularization.

1.6 Thesis outline

1.6.1 Chapter 2- Iterative stationary wavelet transform thresholding
reconstruction

In chapter 2 the reconstruction of a single under-sampled k-space dataset based on the
Sparsity in a transform domain and the Coil sensitivity profiles constraints described in
section 1.1 are considered. An Iterative stationary wavelet transform thresholding
algorithm is developed whereby the image is reconstructed by alternating between the
spatial, wavelet, and frequency domains, in which the coil sensitivity, wavelet sparsity,
and sampled k-space data consistency constraints are respectively re-enforced. While the
rationale behind the use of Iterative stationary wavelet transform thresholding for

Compressed sensing is more thoroughly explored in chapter 3, chapter 2 demonstrates
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how it can be incorporated in an Iterative stationary wavelet transform thresholding for

Under-sampled MRI reconstruction.

1.6.2 Chapter 3- Stationary wavelet transform for under-sampled MRI
reconstruction

As described in section 1.5, sparsity constraints are often incorporated as an lp-penalty6
to regularize the Under-sampled MRI reconstruction inverse problem. While
conventionally the aforementioned [,,-penalty is imposed on the decimated wavelet
transform (DWT) coefficients, chapter 3 shows that this may result in visual artifacts,
e.g., pseudo-Gibbs ringing, most of which can be avoided by penalizing the stationary
wavelet transform (SWT) coefficients instead. It is shown that this holds with various
additional constraints, e.g., coil sensitivities and total variation, which may additionally
be assumed depending on the application. Furthermore, SWT-penalized reconstructions
generally result in lower error values and faster convergence compared to the DWT-

penalized counterparts.

1.6.3 Chapter 4- Similarity-based joint reconstruction in multiple acquisition
problems with application to DESPOT1 T1 mapping

Chapter 4 demonstrates that in applications involving multiple acquisitions, e.g.,
Quantitative MRI: T1/T2 mapping, the similarity between consecutive acquisitions can
be used as an additional reconstruction constraint to achieve improved reconstruction
performance. To this end, an Iterative reconstruction algorithm is developed
incorporating both the similarity and wavelet sparsity constraints for under-sampled data

reconstruction.

Without loss of generality, the methods and results are demonstrated for human brain
DESPOTI T1 mapping. It is shown that joint reconstruction based on the similarity in

addition to individual sparsity constraints results in reduced visual artifacts and

®Le., penalizing an l,-norm, which is defined as:

lxll, = <Zi|xi|p>5
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significantly lower reconstruction error compared to the traditional sparsity-based
individual reconstruction of the images. Additionally, while the individual reconstruction
fails to produce T1 maps even as accurate as a simple low-resolution acquisition, joint
reconstruction results in significantly lower T1 map errors than both the individual and

the low resolution reconstructions.

1.6.4 Chapter 5- Driven equilibrium single pulse observation of T1 with high-speed
incorporation of RF field inhomogeneities (DESPOT1-HIFI)

Frequent uses of the DESPOT1/DESPOT2 T;and T,mapping techniques during the
course of the work presented in this thesis, led to a closer inspection of these techniques
and the pulse sequences involved. This resulted in a modification to an extension of
DESPOT known as DESPOT-HIFI, which addresses some of the limitations of the
conventional DESPOT due to RF field inhomogeneities at high (3T and above) magnetic
fields (see section 5.1). The aforementioned modification is presented and validated on

phantom and in vivo human data in chapter 5.

1.6.5 Chapter 6- Subjective reconstruction quality assessment

While quantitative quality measures, e.g., normalized root mean square error (NRMSE),
contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR), are commonly used to
assess the quality of reconstruction and to compare different reconstructions with each
other, such quantitative measures do not necessarily correlated with perceptual quality
judgments made by radiologists and other end users of the medical images. Therefore, to
be of clinical impact, any quantitative quality assessment/comparison should be
accompanied by subjective evaluations that rate the reconstruction techniques in terms of
their ability to produce diagnostically meaningful images. In chapter 5, the results of a
number of experiments, carried out with the help of collaborating radiologists in order to
subjectively assess the quality of different under-sampled reconstructions, are presented
and compared against each other for specific applications. This chapter also demonstrates

the dependence of the reconstruction performance on the particular application involved.
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2 Iterative stationary wavelet transform
thresholding reconstruction

In this chapter, an iterative stationary wavelet transform (SWT) [1], [2] thresholding
algorithm for Under-sampled MRI reconstruction based on wavelet sparsity [3], [4] and
coil sensitivity profiles in multiple coil acquisitions [5] is developed. SWT penalized
reconstructions are more thoroughly investigated in the next chapter, where I show that
SWT penalized reconstructions result in improved reconstruction performance compared
to the corresponding reconstruction obtained by penalizing the decimated wavelet
transform (DWT) coefficients. In particular, it is shown that some reconstruction artifacts
attributed to the translation-variance of DWT can be eliminated by SWT, which is a
translation-invariant wavelet transform [6]. In this chapter, however, SWT thresholding is
incorporated in an iterative thresholding algorithm [7] to obtain an Iterative stationary
wavelet transform thresholding reconstruction algorithm by alternating between the
frequency domain, in which the k-space data constraint is re-enforced, and the SWT
domain, in which the sparsity constraint is re-enforced. For more background on SWT
and the rationale behind the proposition to use SWT thresholding in the iterative
reconstruction algorithm, the reader is referred to the Introduction section of the next

chapter.

2.1 Introduction
2.1.1 Papoulis-Gerchberg reconstruction

The Papoulis-Gerchberg (P-G) reconstruction algorithm was originally developed for
reconstruction from partial spatial or frequency domain data with a finite support
constraint in the other domain. The signal is reconstructed by alternating between these
domains to re-enforce the data and support constraints in the corresponding domains.

This algorithm has been also used for MRI reconstruction from limited k-space
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observations with the assumption of a finite spatial support constraint on the image [9],

[10], [11].

As described in the methods section, a similar reconstruction can be obtained with the
assumption of a wavelet sparsity constraint (equivalent to the support constraint in P-G).
Similar to the P-G algorithm, the image is reconstructed by alternating between the
frequency domain and the wavelet domain to re-enforce the known k-space data and
sparsity constraints, respectively. Nevertheless, in addition to the domain on which these
constraints are defined (wavelet vs. spatial), they also differ in the sense that while a
known finite support can be considered a hard constraint, a sparsity constraint on the

unknown wavelet coefficients is a soft constraint.

2.1.2 Under-sampled MRI reconstruction

Assume Cartesian k-space trajectories and assume any point on the k-space grid is either
sampled or replaced by zero. K-space under-sampling can, therefore, be denoted by a
linear operation, Ug, defined in Fourier space. The relationship between the fully-

sampled k-spaced data, F, and the under-sampled k-space data, F,, can be expressed as:
E, = UpF (2.1)

Under-sampling is usually assumed to be random to achieve incoherent under-sampling

artifacts [3], [12].

Also, with many pulse sequences one may not achieve further time savings by under-
sampling in the readout (k, ) direction, since in practice it is not possible to move from
one k, position to another without passing through the intervening positions. Therefore,
assuming full sampling in the readout direction, the problem reduces to a 1D (for 2D

MRI) or 2D (for 3D MRI) interpolation problem in the phase-encode directions.

Our objective is to reconstruct F, or equivalently in the spatial domain, f, from the under-

sampled k-space data, F,, based on an a priori sparsity constraint, where f = F~1F is the
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spatial domain representation of F, where F is the Fourier transform operation and *

denotes the adjoint operation.

2.2 Iterative stationary wavelet transform thresholding

Assume an under-sampled image f;, corresponding to an under-sampled k-space dataset
E,. Consider the SWT decomposition of f,;: Csyyr = Ysyrfu, Where Yy r is the
stationary wavelet transforms, and Cgyr contains the corresponding wavelet
decomposition coefficients. Assume a thresholding operation, y, acting on the
decomposition coefficients: Csyyr = ¥{Cswr}. The SWT thresholded image is obtained
by SWT reconstruction of the thresholded coefficients: fgr = YiyrCowr. In order to

simplify our notation, define a SWT thresholding operation, I', such that

f =T = bswry{bswrfu} (2:2)

Beginning with f;, as the initial estimate to the solution, a better estimate is achieved by
removing some of the aliasing artifacts by the thresholding (sparsity-promoting)

operation: g = T'{f,}. The superscript denotes the iteration number.

However, both under-sampling (Ur) and thresholding (I") operations reduce the energy of
the image. Consequently, g has reduced energy compared to f, and £, has reduced

energy compared to f.’

In addition, while thresholding should have revealed more features of the image by

removing some of the aliasing artifacts, it may as well have affected the known k-space
samples. Mathematically, F, = U;F # UgG®, where G = Fg® is the Fourier
transform of g(». In other words, if GV is under-sampled in the same manner k-space
was, the resulting under-sampled data will not necessarily be consistent with the original

under-sampled k-space data.

" In fact, f, = F~'E, has the minimum energy among all the solutions consistent with the
k-space data since we assume the unobserved k-space samples are simply replaced by
zero in F,,. This is usually called a minimum-energy reconstruction.
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Iterative SWT thresholding reconstruction algorithm

Inputs:
F,: Under-sampled k-space data
Ur: Under-sampling operation selecting k-space data
Output:
F...: Reconstructed k-space data
Algorithm:
// Initialize to the minimum energy reconstruction
Frec « Fu,l
//Reconstruct through iterative thresholding
while not converged do
frec < F1E... //sum of squares
f = T'foec //thresholding
//data consistency
FeFf
Frec « F—UfF +F,
end

Table 2.1- Iterative SWT thresholding reconstruction algorithm

Therefore, before further progress, the known k-space samples are recovered by replacing

the corrupted values with those originally observed: F(V = G — U.¢™ + E,.

Note that F(1 has higher energy than E, since some of the unknown coefficients, which

are replaced by zero in E,, take an estimated value in F(V),

Since £ is a better estimate of f than f,, this estimate can potentially be improved by
repeating the above procedure in an iterative manner, where, at the nth iteration, starting
with the latest estimate at the previous iteration, f (=1, the next estimate is achieved by a

sparsity-promoting operation,

gm =T by, (23)
followed by recovery of the known k-space samples,

FW =M™ —y.¢™ +E, (2.4)
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Combining these two operations, and noting f™ = F*F™  the iterative process can be

expressed as
£ = {fD} — F*U FI{f "V} + F*E, (2.5)

The iterations are initialized with the minimum-energy reconstruction, f©@ = f,, and
continue until a convergence criterion is reached. E.g., changes between iterations of less
than a certain threshold are recorded, |f™ — f=D|/|f™| < ¢, or a maximum number

of iterations is reached.

Table 2.1 summarizes the iterative SWT thresholding reconstruction algorithm.

2.2.1 Multiple coil data and combination with parallel imaging

Extension of this algorithm to multiple coil acquisitions is straightforward. Assuming
under-sampled coil data F, ;; i = 1,2, ..., N., where N, is the number of coils, at each

iteration the enforcer, e.g., wavelet thresholding, is applied to the combined-channels

, 2
image, fopr = 2?’;1 w; %“, where w; = ﬁ, and s; is the sensitivity profile of the ith
j=1"Jj

coil:

f = F{fopt} (2.6)

In order to ensure consistency between the acquired data and the reconstructed image, the
image estimate is modulated by the sensitivity profiles of the coils [13]. The data

consistency operation then becomes:
Fl' = F'l' - UFFL' + Fu,i (27)

where F; = Fs;f , and s; is the sensitivity profile of the ith coil. In practice, the
sensitivity profiles can be acquired either by a separate pre-calibration reference
acquisition or by fully sampling the center of k-space to be used as low-resolution auto-

calibration reference data. This approach to incorporating coil sensitivity data in the
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reconstruction algorithm is similar to the POCS-based parallel imaging reconstruction

algorithm described by Samsonov et al [13].

Table 2.2 summarizes the multiple-coil iterative reconstruction algorithm.

Multiple-coil iterative thresholding reconstruction algorithm
Inputs:
Fy,;: Under-sampled k-space data (i = 1, ..., N, where N, is the number of coils)
s;: Coil sensitivities
Ur: Under-sampling operations selecting k-space data
Output:

F;: Reconstructed k-space data
Algorithm:

// Initialize to the minimum energy reconstruction
fori « 1: N, do

Fi « Fy;

end

//Reconstruct through iterative thresholding
while not converged do
//combine multiple channel data

N¢ fi - i
fopt & Xy wl-s—://where fi =F 'F,and w; = S

//thresholding

f < I'(fopt) // where the nonlinear thresholding operation I' is
defined as: I'(f) = Y*y (¥ f), where 1) denotes wavelet transform and y denotes
thresholding.

//data consistency
fori < 1: N, do
Fi < F(sif)
Fy « F; — UpF; + Fy;
end
end

Table 2.2- Multiple-coil iterative thresholding reconstruction algorithm.

2.3 Methods

Brain MR images of volunteers and patients were acquired at 3T using a GE scanner

(Discovery 750, software revision 22M32, General Electric Healthcare, Waukesha, WI)
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with spoiled gradient echo (SPGR). The parameters used for the SPGR acquisitions are as
follows: matrix: 256x256x160, resolution = 1mm isotropic, TE/TR = 3.71ms/8.36ms, flip
angle = 18°, BW ==+19.23 kHz, NEX=1. Human data used in this work were acquired
using a protocol approved by the University of Western Ontario Office of Research

Ethics.

SPGR datasets of a total of 5 healthy volunteers and 10 temporal lobe epilepsy (TLE)
patients were used in the first set of experiments, with the fully-sampled datasets being
employed as the gold standard. Independent 2D random under-sampling was achieved by
selecting phase-encodes (k,, and k,) by drawing samples from a Gaussian distribution
with a zero mean (corresponding to the center of k-space, i.e., the zero frequency) and a
standard deviation of 0.25mm™. To eliminate the dependence of the reconstructions on
the under-sampling pattern, the same randomly selected under-sampling patterns were

used for all datasets in this set of experiments.

Each set of under-sampled data was reconstructed by both iterative soft and hard wavelet
thresholding using both the SWT and DWT, and by 11 + TV norm optimization [3], [4]
(i.e, ming ||Yf*|l, + aTV(f*) s.t. |[UpFf* — E,ll, < &, where 1 is the wavelet
transform operation) for comparison. 11 + TV norm optimization was performed by the
conjugate gradient method, using the code supplement to [3]. The results were also
compared with low-resolution sampling (acquired by zero-padding in the phase-encode
directions in k-space, i.e., interpolation by a sinc kernel in the spatial domain) with the
same under-sampling factor. These experiments were repeated for under-sampling factors

from 1.5 to 4.

Another set of experiments was performed to study the sensitivity of the reconstruction to
the randomly generated under-sampling pattern. In these experiments, a single dataset
from a healthy volunteer was under-sampled with 15 different under-sampling patterns

generated independently based on the Gaussian distribution.

To evaluate these algorithms on multiple coil data, brain images of a healthy volunteer

were acquired by FSE using a 32-channel head coil with the following parameters: matrix
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matrix: 256x256, resolution = Imm, slice thickness = 2mm, TR/TE = 3600ms/80ms, ETL
=15, BW =+15.63 kHz, NEX = 1. A portion of k-space at the center was fully-sampled
to generate the low-resolution auto-calibration reference data and the rest of k-space was
under-sampled as described previously. The under-sampled data achieved in this manner
were reconstructed by iterative SWT thresholding using coil sensitivity profiles computed
from the auto-calibration reference data. For comparison, the under-sampled data were
also reconstructed by the POCS-based //-SPIRiT (iterative self-consistent parallel
imaging reconstruction) method described in [14] using the code provided by the authors.
In order to draw conclusions with statistical significance and to eliminate possible
dependence of the conclusions on the choice of the under-sampling pattern, the

experiments were repeated with 15 independent random under-sampling patterns.

However, there are a few considerations that should be taken into account when under-
sampling an echo train pulse sequence in practice. While under-sampled k-space data can
be acquired by reducing the echo train length (ETL), this may not reduce the acquisition
time since longitudinal recovery requires a minimum time interval between successive
excitations. On the other hand, under-sampling by maintaining the ETL requires that the
total number of phase-encode lines to be evenly divisible by the ETL since acquisition of
a partial echo train is not practical. Nevertheless, in this article we follow the
conventional evaluation approach of acquiring fully-sampled k-space data, which are

then under-sampled by assuming a specific under-sampling factor.

All the algorithms were implemented in MATLAB (MathWorks, Inc., Natick, MA). In
all the experiments, reconstruction quality was measured in terms of the normalized root
mean square error (NRMSE) with respect to the fully-sampled data. The statistical
significance of the findings was evaluated by paired comparisons of the NRMSE values
based on paired t-tests under the null hypothesis that the mean NRMSE of the second
reconstruction in each pair is smaller than or equal to that of the first one. Since several
such t-tests were performed, the comparisons were corrected by the Bonferroni correction

where each individual hypothesis is tested at a statistical significance level of a/n to
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achieve the desired significance level of a for the whole set of experiments, where n is

the total number of tests. In this thesis we used @ = 0.05.

go1a b | —&— SWTh _
CWyTh
0016 L —o— [1+TV |
lowres I
—B— SWTs m
00141 | —=— DWTs 1]
L 0.012
%]
£
X 001
0005
0006
0.004 {7

3
LUnder-sampling factor

Figure 2.1- Mean NRMSE values with the corresponding error bars of one standard
deviation for the reconstruction of 15 different SPGR images from under-sampled k-
space data with the same under-sampling pattern. For clarity, the error bars are shown at

increments of 0.5. However, the growth in the error bars follows a consistent trend.

2.4 Results

Figure 2.1 shows the mean NRMSE and the corresponding error bars of one standard
deviation for the reconstruction of 15 SPGR images with the same k-space under-
sampling. Reconstructions by SWT hard and soft thresholding (SWTh and SWTs
respectively) are compared with the reconstructions by DWT hard and soft thresholding
(DWTh and DWTs respectively) as well as the reconstructions by [1+TV norm

optimization (11+TV) and the low-resolution (lowres) reconstructions. The mean and
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95% confidence interval of the paired NRMSE differences are shown in Table 2.3.

Negative NRMSE difference means and confidence intervals that do not include zero

indicate that the first method produced lower reconstruction errors than the second one.

After the Bonferroni correction all entries were significant except for the two denoted by

asterisks.

The results indicate that SWT soft/hard thresholding significantly improves the

reconstruction quality, measured in terms of NRMSE, compared to DWT soft/hard

thresholding. Furthermore, SWTh results in lower NRMSE values compared to SWTs.

Also, SWTh results in lower NRMSE values compared to the [1+TV and lowres

reconstructions. The same trend is seen for SWTs with the exception that no statistical

significance is observed at the intermediate under-sampling factors for comparison with

11+TV (p-values in the order of 5 X 1073 at these under-sampling factors, which are

insignificant after the Bonferroni correction).

(x10-4)
U.F. 1.5
SWTh- -9.0e-4 £
DWTh 1.4e-4
SWTs- -9.2e-4 £
DWTs 1.4e-4
SWTh-SWTs -4.1e-4 +
8.8e-5
SWTh- -1.6e-3 +
11+TV 4.0e-4
SWTs- -1.2e-3+
11+TV 4.2e-4
SWTh- -1.5e-3 £
lowres 4.9e-4
SWTs- -1.1e-3
lowres 4.9e-4

2
-1.5e-3
2.5e-4
-1.3e-3
2.1e-4
-24e-4 +
5.3e-5
-1.8e-3 £
7.7e-4
-1.6e-3
7.8e-4
-2.1e-3
5.8e-4
-1.8e-3
5.9e-4

2.5
-2.1e-3 £ 3.4e-
4
-1.6e-3 £ 2.6e-
4
-2.7e-4 £ 1.2e-
4
-1.5e-3 £ 7.8e-
4
-1.3e-3 £ 8.1e-
4*
-2.6e-3 £ 5.9e-
4
-2.3e-3 £ 5.2e-
4

3
-2.7e-3 £ 4.2e-
4
-1.9e-3 £ 2.9e-
4
-4.1e-4 £+ 1.2e-
4
-1.5e-3 £ 8.3e-
4
-1.1e-3 £ 8.2e-
4_*
-2.8e-3 £ 5.5e-
4
-2.4e-3 + 4.8e-
4

3.5 4
-2.9e-3 -2.9e-3
4.6e-4 4.5e-4
-2.3e-3 -2.7e-3 £
3.4e-4 3.8e-4
-3.3e-4 + -3.1le-4 +
1.1e-4 1.2e-4
-2.7e-3 -4.3e-3 £
1.4e-3 2.2e-3
-24e-3+ -4.0e-3 +
1.4e-3 2.2e-3
-3.6e-3 -5.5e- -4.1e-3 -5.3e-
4 4
-3.3e-3 + -3.8e-3
4.9e-4 4.8e-4

Table 2.3- Mean and the 95% confidence interval of the paired NRMSE differences (i.e.,

the NRMSE of the second reconstruction in each pair subtracted from that of the first) for

the reconstruction of 15 different SPGR images. All the findings in this table are

statistically significant under the Bonferroni correction, except those denoted by an

asterisk (*).

* No statistical significance after the Bonferroni correction.
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Figure 2.2 shows the mean NRMSE values along with the corresponding error bars for
the reconstruction of a SPGR image from 15 sets of independently under-sampled k-
space data. The mean and the 95% confidence interval of the paired NRMSE differences
are shown in Table 2.4. Similar to the previous set of experiments, negative NRMSE
difference means and confidence intervals that do not include zero indicate that the first
method produced lower reconstruction errors than the second one. Furthermore, after the

Bonferroni correction all entries were significant.

107

MNREMSE

o |
15 2 25 3 35 4

Under-sampling factor

Figure 2.2- Mean NRMSE values with the corresponding error bars of one standard
deviation for the reconstruction of a SPGR image from 15 sets of independently under-
sampled k-space data. For clarity, the error bars are shown at increments of 0.5.

However, the growth in the error bars follows a consistent trend.

The findings are similar to the previous set of experiments in terms of the relative

performance of the different reconstruction techniques. However, the variance in the

www.manaraa.com



Page |39

reconstruction error is much smaller than in the previous experiments. This indicates that
the reconstruction methods are relatively insensitive to variations in the randomly

generated under-sampling patterns.

UF 1.5 2 2.5 3 3.5 4
SWTh- -9.2e-4 + -1.6e-3 + -2.1e-3 -4.2e- -2.9e-3 + -3.2e-3 + -3.2e-3
DWTh 1.9e-5 3.0e-5 5 7.8e-5 5.3e-5 6.3e-5
SWTs- -9.7e-4 + -1.5e-3 + -2.0e-3 + -2.3e-3 + -2.7e-3 -3.1e-3 +
DWTs 9.7e-6 1.9e-5 2.9e-5 3.6e-5 5.4e-5 6.5e-5
SWTh- 41e-4 + -2.6e-4 + -2.9e-4 + -6.0e-4 + -6.1e-4 + -6.5e-4 +
SWTs 1.3e-5 3.7e-5 2.9e-5 5.2e-5 5.1e-5 6.1e-5
SWTh- -9.9¢-4 + -1.0e-3 £ -9.7e-4 + -1.3e-3 ¢ -2.6e-3 £ -4.6e-3 £
11+TV 2.5e-5 8.9e-5 8.3e-5 1.6e-4 2.5e-4 4.2e-4
SWTs- -5.8e-4 + -7.4e-4 + -6.8e-4 + -7.5e-4 + -2.0e-3 -4.0e-3
11+TV 2.1e-5 8.0e-5 9.3e-5 1.5e-4 2.3e-4 43e-4

Table 2.4- Mean and the 95% confidence interval of the paired NRMSE differences (i.e.,
the NRMSE of the second reconstruction in each pair subtracted from that of the first) for
the reconstruction of a SPGR image from 15 sets of independently under-sampled k-
space data. All findings in this table are statistically significant after the Bonferroni

correction.

Figure 2.3 provides a visual comparison of the different reconstructions of the SPGR data
at an under-sampling factor of 4. Note the increased visual artifacts in the DWT
reconstructions. Also, the [1+TV reconstruction results in over-smoothing of the image.

The visual comparison of the images conforms to the NRMSE values.

Figure 2.4 shows the sum of squares (SOS) of the reconstructed under-sampled (under-
sampling factor 6) multiple coil FSE data. Reconstruction by SWTh is compared to the
11SPIRIT reconstruction described in [14] and the low-resolution sampling with the same
under-sampling factor. The progress of the reconstruction algorithms is shown in

Figure 2.5 in terms of the normalized RMSE vs. iteration number. The plots indicate that

SWTh stabilizes after fewer iterations than [1SPIRiT.

Although the images and NRMSE values of Figure 2.4 correspond to a specific under-
sampling pattern, repeating the experiment with 15 independent random under-sampling
patterns suggests that the SWTh reconstruction results in significantly lower NRMSE
values than 11SPIRIT.
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NRMS5E=0.0138

11+TV ¥ 5 % lowres
NRMSE=0.0141 ' NRMSE=0.0147

Reconstructed Difference Reconstructed Difference

Figure 2.3- Visual comparison of different reconstructions of an under-sampled SPGR
dataset. K-space data are randomly under-sampled in the two phase-encode directions by
a factor of 4. The reconstructed images and the corresponding difference images with

respect to the fully-sampled image are shown.
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Figure 2.4- Sum of squares (SOS) of the reconstructed multiple coil data. The normalized
root mean square errors (NRMSE) are computed with respect to the fully-sampled SOS

after 40 iterations.

2.5 Discussion

The results show that iterative SWT thresholding significantly reduces the reconstruction

error compared to iterative DWT thresholding and 11+TV norm optimization.
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Furthermore, we demonstrated that the non-convex hard SWT thresholding results in
significantly lower reconstruction error values than the convex soft SWT thresholding at
all the under-sampling factors. This suggests that use of other non-convex enforcers

iteratively could improve the reconstruction quality.

0.04 | | T
.......... |Owres
MSPIRIT
———-SWTh
00351 .
0.03 .
L
[5)]
S
o
=
0.025 .
0.02 .
0015 ' : :
0 S0 100 150 200

terations

Figure 2.5- Normalized RMSE vs. iteration number for the reconstruction of the under-
sampled 32-channel brain data. The proposed iterative SWT thresholding reconstruction

is compared with 11SPIRIT at under-sampling factor of 6.

As noted, reconstruction by soft thresholding consists of iterative projections onto convex
sets, for which convergence to a point in the intersection of those convex sets is
guaranteed [15]. While convergence is not guaranteed for SWT hard reconstruction, my
observations indicate that the reconstruction stabilizes to an acceptable solution after a
reasonable number of iterations. In practice, the reconstruction algorithm may be

terminated after a certain number of iterations.
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2.6 Conclusion

I demonstrated an iterative stationary wavelet transform (SWT) thresholding algorithm
for the reconstruction of under-sampled k-space data based on the wavelet sparsity of MR
images and coil sensitivity profiles in case of multiple coil acquisitions. In addition to
developing a reconstruction algorithm based on the translation-invariant SWT

thresholding, we explored the effects of both hard and soft thresholding.

Iterative SWT reconstruction was compared with the iterative DWT reconstruction as
well as the reconstruction by 11 + TV norm minimization and low-resolution sampling.
Iterative SWT reconstruction of multiple coil data was compared with 11SPIRiT
reconstruction. The experiments were performed on in vivo brain data. The results show
that both hard and soft SWT thresholding result in significantly better reconstruction
quality compared with DWT thresholding as well as the reconstruction by 11+TV norm
optimization and low-resolution sampling. Also, significantly better results were
achieved by SWT thresholding compared to 11SPIRIT for multiple coil data

reconstruction.

Since soft thresholding is a convex enforcer, the reconstruction through iterative soft
thresholding is a projections onto convex sets (POCS) algorithm, guaranteeing
convergence. Hard thresholding, being non-convex, has no such theoretical convergence

guarantee, but we found that it stabilizes quickly and produces lower errors.
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3 Stationary wavelet transform for under-
sampled MRI reconstruction

In addition to coil sensitivity data (Parallel imaging), sparsity constraints are often used
as an additional [,-penalty for under-sampled MRI reconstruction (Compressed sensing).
Penalizing the traditional decimated wavelet transform (DWT) coefficients, however,
results in visual pseudo-Gibbs artifacts, some of which are attributed to the lack of
translation invariance of the wavelet basis. I show that these artifacts can be greatly
reduced by penalizing the translation-invariant stationary wavelet transform (SWT)
coefficients. This holds with various additional reconstruction constraints, including coil
sensitivity profiles and total variation. Additionally, SWT reconstructions result in lower
error values and faster convergence compared to DWT. These concepts are illustrated
with extensive experiments on in vivo MRI data with particular emphasis on multiple-

channel acquisitions.

3.1 Introduction

Cost considerations and patient comfort limit the total acceptable acquisition time in
magnetic resonance imaging (MRI). On the other hand, it is necessary to acquire high-
resolution images with high signal-to-noise ratio (SNR) for some applications. However,
the SNR in MRI is proportional to the voxel volume and the square root of the acquisition
time [1], which implies that high resolution and SNR are only achieved at the expense of
long acquisition times. This in turn limits the number of pulse sequences that can be run
in a clinical examination, which consequently limits the information that can be obtained.
Therefore, there has been a strong motivation to reduce the acquisition time without
compromising the resolution or the SNR of the MR images, since the introduction of this

modality.
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(a) Image features are aligned with those of the (b) Image features are misaligned with those of the
wavelet basis (dashed red line), resulting in a wavelet basis after the translation (dashed red
very sparse decomposition line), resulting in a less sparse decompaosition

Figure 3.1-Illustration of the lack of translation invariance of DWT and the resulting
thresholding artifacts: A simple test image- an 8x8 square in the middle of a 16x16 black
background (a) and a shifted version of it (b) are decomposed with the Haar wavelet to 1
level. The original image is deliberately chosen to align with the wavelet basis, resulting
in a very sparse decomposition. The shift, however, results in a misalignment between the
image features and those of the wavelet basis functions, which, consequently, results in
noticeable loss of the sparsity of the decomposition. In each case, the decomposition
coefficients are hard thresholded and a wavelet reconstruction (IDWT) is performed on

the thresholded coefficients. Dashed circles highlight the reconstruction artifacts.
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In addition to Parallel imaging techniques [2]—[4], another approach to improving the
trade-off between the acquisition time and the resolution is the acquisition of under-
sampled k-space data and the use of the sparsity of the image in a transform domain, as
an a priori reconstruction constraint, to interpolate the missing data. This approach is
commonly referred to as Compressed sensing or compressive sampling (CS) [5]-[8] and

can be used in conjunction with parallel imaging [9].

Wavelet sparsity is commonly used as a reconstruction constraint in compressed sensing
and sparse recovery applications. Conventionally, a weighted [,,-penalty on the decimated
wavelet transform (DWT?) coefficients is used as a regularization term and the
reconstruction problem is generally formulated as a constrained optimization- see [6]-

[8], [10] and references therein.

It is well established in thresholding-based denoising that thresholding with the
traditional DWT often results in pseudo-Gibbs artifacts, which are connected to the
misalignment between the image features and the features of the wavelet basis [11]. For
example, in Figure 3.1 a shift in the image results in misalignment between the image
features and those of the wavelet basis after the shift (Figure 3.1(b)), which consequently
results in a less sparse wavelet decomposition than the original image where the image
features are deliberately chosen to match those of the wavelet basis (Figure 3.1(a)). Note
that the shift does not change the energy of signal but after the shift the energy is spread
over more [smaller] coefficients. A sparse decomposition is desirable in denoising as well
as in sparse recovery applications since it allows the original features of the image to be
distinguished from the noise or under-sampling artifacts (and therefore enabling us to
efficiently remove noise/artifacts, e.g., by thresholding) [7], [11]. This is pictorially

shown in Figure 3.1 where thresholding results in visual reconstruction artifacts in

¥ DWT is also used to abbreviate discrete wavelet transform. Since in this article we are
essentially considering discrete cases only, any mention of the wavelet transform refers to
the discrete wavelet transform (either decimated or undecimated). We use the
abbreviation DWT to distinguish the decimated [discrete] wavelet transform from its
undecimated version, i.c., SWT.
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Figure 3.1(b) due to the removal of a number of wavelet coefficients that fall below the
threshold in the less sparse representation. (Obviously, in this example one can avoid the
artifacts by choosing a smaller threshold that maintains all the coefficients, but in practice
a too small threshold fails to remove the noise/artifacts resulting in poor
denoising/reconstruction. In this example the threshold is chosen to be 1/4 of the largest
coefficient, for the sake of illustration.) The effect of the choice of the threshold in

practice is more thoroughly investigated in the Results section.

One could possibly avoid the misalignment between the image features and those of the
wavelet basis by shifting the image or the basis functions to make them aligned.
However, this requires a priori knowledge of the best aligning shift. Furthermore, when
the image contains several discontinuities, there may not be a single shift that works for
all the discontinuities- the best shift for one may be the worst for the other. Consequently,
Coifman and Donoho proposed the idea of “translation-invariant denoising,” i.e.,
average|[shift-denoise-unshift] for several (or all possible) shifts [11]. This, in practice, is
often achieved by stationary wavelet transform (SWT) thresholding, which provides a
translation-invariant basis [12], [13]. For the sake of completeness, a brief description of
SWT based on [12] follows. For simplicity, let us consider the 1D discrete case only-

extension to 2D is straight forward.

DWT decomposition of a signal x(t) results in the scaling (approximation) and wavelet

(detail) coefficients:
¢f = (x(t), 2729 (5 — k)) (.1)

df = (x(), 2772y (5 - k)) (3.2)

where @ (t), and Y (t), are the scaling and wavelet functions, respectively, and j and k

amount to the scaling and translation of the wavelet basis, respectively.

For SWT, a redundant decomposition can be obtained as,
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5§1k+p (x(1), 271/ (21 —k)) (3.3)

d kD (£), 270/ 2 (t P k)) (3.4)

where p € {0, e, 20 — 1} allows for all the possible shifts in a discrete setting.

For decomposition to j,,, levels, 2/m different orthogonal bases can be generated. The
different possible choices can be illustrated by a binary tree in the form of Figure 3.2.
Each node in this tree is indexed by parameters (j, p), to which the set of coefficients

~20k+
(e

i } is associated. Each path from the root of the tree to a leaf corresponds to the
kez

set of functions

(279729[(t —p;)/2) — k| k € Z,1 < j < jm}u{27m/20[(t —p; )/2/m — k|, k € Z}
, which forms an orthogonal wavelet basis, resulting in a standard wavelet reconstruction.
The inverse SWT is often defined as the average of all the 2/m different reconstructions

obtained in this manner.

While SWT is predominantly used in denoising, to the best of my knowledge, the use of
SWT in compressed sensing and sparse recovery applications, particularly in under-
sampled MRI reconstruction, has not been explored before. The key idea here is that the
l,-penalty on the DWT coefficients may essentially result in the same sort of artifacts

described above, which can be avoided or reduced by penalizing the SWT coefficients.

The intent of this chapter is to call attention to the benefits of the use of SWT in place of
DWT for compressed sensing and sparse recovery, with particular focus on MRI
reconstruction from under-sampled k-space data. Although use of SWT for such
applications may seem counter intuitive, since it is a redundant transform, it is shown that
significant improvement in reconstruction quality is achieved by replacing the L,-penalty
on the DWT coefficients with one on the SWT coefficients. This holds even with
additional constraints, including total variation (TV) penalties or coil sensitivity

constraints when compressed sensing is combined with parallel imaging.
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Figure 3.2- Shift-localization tree for a three level stationary wavelet transform (SWT)
decomposition. Each node is indexed by parameters(j, p), where j is the decomposition

level and p is the shift. For clarity, the binary representation of p is shown in brackets.

Furthermore, a few authors have recently reported the use of DWT with random shifts
[14] to address the DWT translation variance problem for compressed sensing and sparse
recovery applications [15], [16]. In this chapter, use of random shifts with decimated
wavelet transform will also be considered in comparison with the conventional decimated

wavelet transform as well as its undecimated version, i.e., SWT.

In addition to reduced visual artifacts, SWT results in significantly lower reconstruction
errors as well as faster convergence. Furthermore, despite its redundancy, it can be

computed rapidly- in n log(n) time [11].

All these concepts are illustrated by extensive experiments with different reconstruction
techniques, all of which are reproducible using the supplementary code provided with

this thesis or the code supplied by the authors cited in this thesis.
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3.2 Stationary wavelet transform sparse recovery

In the discussion that follows we perform a point spread function (PSF)’ analysis to
demonstrate the advantage of SWT thresholding over DWT thresholding for removing
under-sampling aliasing artifacts. A computational experiment with the Shepp-Logan
phantom is also presented to illustrate the visual artifacts in the DWT reconstruction

compared with those in the SWT reconstruction.

Let f(m,n) = §(m, n) be an impulse input in the spatial domain, where §(m, n) =

1 m=0n=0
{

.. Transforming f to the Fourier domain, under-sampling, and
0  otherwise &f pHng

transforming back to the spatial domain results in the k-space under-sampling PSF, f,,

(Figure 3.3):
fu=F UFf (3.5)

where Uy is the Fourier (k-space) under-sampling operation and F is the Fourier

transform.

Now consider the wavelet decomposition of f,, using DWT and SWT: Cpyr = Ypwrfus
and Csyyr = Yswrfu, Where Ypyr and Ygyr are the decimated and stationary wavelet
transforms, and Cpyr and Cgyr are the corresponding wavelet decomposition
coefficients. Assume a thresholding operation, y, acting on the decomposition
coefficients: Cpyr = ¥(Cpwr), and Csyyr = ¥ (Csyr). The corresponding PSFs are
computed by wavelet reconstruction of the thresholded coefficients: for = YhwrCowrs
and foyr = YiwrCowr. Figure 3.3 shows the DWT and SWT soft thresholding PSFs.
The same threshold, chosen using the Birgé-Massart strategy [17], is used with both
DWT and SWT. (The choice of the threshold and its effect on the reconstruction is more

thoroughly investigated in the Results section.)

? A linear shift-invariant imaging system can completely be described in terms of its point
spread function (PSF). Although thresholding is a non-linear operation, we still use the
PSF for illustration/comparison of the artifacts.
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Note that with the assumption of under-sampling in the phase-encode (k,,) direction only,
the point spread functions can be sufficiently illustrated with 1D plots. An example of the
reduction of the artifacts by SWT thresholding compared to DWT thresholding is
highlighted. Several such reductions can be easily identified on the PSFs. As illustrated in
Figure 3.3, SWT thresholding results in noticeably fewer artifacts than the corresponding
DWT thresholding.

Under-sampling PSF

02
0.1

T
|

T
|

50 100 150 200 250

50 100 4 150 200 250
SWT PEF
02 .
01 .
U ol . — | \5 L e 1
50 100 15 200 250

Figure 3.3- Point spread functions (PSF) resulting from k-space under-sampling followed
by the application of DWT and SWT soft thresholding. An example of the reduction of
the artifacts by SWT thresholding compared to DWT thresholding is highlighted.
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Since the aliasing artifacts are effectively incoherent'’, the signal-to-alias ratio, defined as
the energy of the signal (i.e., the peak in this case) to the energy of the alias (i.e., the side-
lobes in this case) of the PSFs, provides a quantitative means of comparing these PSFs
with each other and with the under-sampling PSF (Table 3.1). The higher signal-to-alias

ratio achieved by SWT thresholding also indicates less aliasing interference.

Signal-to-alias ratio

Under-sampling PSF 0.506
DWT thresholding PSF 0.647
SWT thresholding PSF 0.912

Table 3.1- Signal-to-alias ratios corresponding to the point spread functions (PSF) in

Figure 3.3.

In order to illustrate the nature of the artifacts associated with the DWT reconstruction,
consider the computational experiment of reconstruction of the Shepp-Logan phantom
(Figure 3.4a) from under-sampled frequency domain data. For the sake of illustration,
and since Cartesian sampling is by far the most common way of acquiring k-space data in
MRI, we assume Cartesian under-sampling in the y direction (corresponding to under-

sampling in the phase-encode direction in an MRI application).

Figure 3.4(b,c) show the reconstruction of the under-sampled frequency domain data
based on an [, penalized optimization, i.e., mings || f*[[; s.t. |UpFf* — E [, < &,
where the reconstruction in Figure 3.4(b) is achieved when ¥ = 7 1s a decimated
wavelet transform and that of Figure 3.4(c) is achieved when Y = g7 is the
corresponding stationary wavelet transform. Here f* denotes the reconstructed image, F
the Fourier transform, Uy the under-sampling operation in the frequency domain, and F,
the acquired frequency data. As shown in Figure 3.4(b,c), most of the artifacts present in

the DWT reconstruction are absent in the SWT reconstruction.

' In compressed sensing, it is desired to have incoherent (noise-like) under-sampling
artifacts so that they can be distinguished from the original signal/image features in the
sparse domain [7]. The incoherence is often achieved through random under-sampling.
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(a) Original (b) SWT [ (c) DWT,

(d) SWT I + TV (€) DWT L, + TV

Figure 3.4- Reconstruction of the Shepp-Logan phantom from Cartesian under-sampled

frequency data by DWT/SWT-1;(+TV) penalized optimization.

Furthermore, several authors have reported that it is often useful to include an additional
total variation (TV) penalty in the reconstruction [7], [18]. Since all the previous works
were based on penalizing the DWT coefficients, the TV term was needed to alleviate the
associated artifacts. However, as illustrated by the above example, penalizing the SWT

coefficients may reduce the need for the additional TV penalty. Nevertheless, as
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illustrated in Figure 3.4(d,e) SWT is preferred over DWT with an additional TV penalty,
e, ming || f*|l,, + aTV(f*) s.t. [UsFf* = Ell,, < &, also'".

3.3 Methods

Single channel spoiled gradient recalled (SPGR) data of a healthy volunteer were
acquired at 3T using a GE scanner (Discovery 750, software revision 22M32, General
Electric Healthcare, Waukesha, WI) with the following parameters: matrix: 256x256,
resolution = 0.86mm isotropic, slice thickness = Imm, TE/TR = 4.1ms/8.9ms, BW =
+19.23 kHz, flip angle = 18°, NEX = 1. Human data used in this work were acquired
using a protocol approved by the University Of Western Ontario Office Of Research
Ethics.

k-space data were retrospectively under-sampled in the phase-encode direction and the
under-sampled data were reconstructed by SWT [; + TV penalized and DWT [; + TV

penalized optimization, i.e.,
ming: £l + aTV(F) st lUFf = Fll, < e (3.6)

with Y = Ysyr and Y = Ypy 1, respectively. The optimization was performed using the

code provided by Lustig for [7].

In practice it is expected to achieve the best under-sampled reconstruction performance
by the combined application of compressed sensing and parallel imaging. Iterative
thresholding reconstruction [10] can be modified to directly incorporate the coil

sensitivity profiles.

The multiple-coil iterative thresholding reconstruction algorithm is shown in Figure 3.5.

"' Tt should be noted that the Shepp-Logan phantom heavily favors a TV penalty (perfect
reconstruction has been demonstrated for the Shepp-Logan phantom with a TV penalty
with radial under-sampling [5]). Such drastic improvement with an additional TV term
may not be observed with real MR images though.
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A flow chart of the multiple-coil reconstruction procedure is shown in Figure 3.5. In Step
1 the combined-channels image is modulated by the coil sensitivity profile of each
channel in order to make the combined-channels estimate consistent with the coil data
before the data projection in Step 2, which enforces the data consistency constraint for

each channel by projecting the current estimate onto the corresponding coil data [19].

Multiple-coil iterative thresholding reconstruction algorithm

Inputs:
F, ;: Under-sampled k-space data (i = 1, ..., N., where N, is the number of coils)
s;: Coil sensitivities
Ur: Under-sampling operations selecting k-space data
Output:

F;: Reconstructed k-space data
Algorithm:

// Initialize to the minimum energy reconstruction
fori « 1: N, do

Fi < Fy;
end

//Reconstruct through iterative thresholding
while not converged do

//combine multiple channel data

N, fi - st
fopt < iy wis—://where fi =F 'F,and w; = ZI-VCL =
j=15]

//thresholding
f < I'(fopt) // where the nonlinear thresholding operation I' is

defined as: I'(f) = Y*y(yf), where 1 denotes wavelet transform and y denotes
thresholding.

//data consistency
fori « 1: N, do
Fi < F(sif)
Fi « F; — UpF; + Fy
end
end

Table 3.2- Multiple-coil iterative thresholding reconstruction algorithm. Fand I' denote

the Fourier transform and wavelet thresholding operations, respectively.
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Figure 3.5- Flowchart of the multiple-coil iterative thresholding reconstruction algorithm
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In Step 3 data from multiple channels are combined to obtain a combined-channels
estimate image. If coil sensitivities are explicitly available, an optimal combination has

been shown by Roemer to be [20]:

_ vNe fi — Siz
fopt = X<y Wi S where w; = oy~  (3.7)
i Zj=1 Sj
where f; is the image from the ith coil and s; is the corresponding coil sensitivity profile.
In practice, the coil sensitivities are commonly extracted from fully-sampled low-
resolution reference data'?, which can be acquired prior to the main scan (pre-calibration)
or integral to the main scan (auto-calibration) by fully sampling a region over the center

of k-space [21]. We use the latter approach to estimate the coil sensitivities.
Finally, in Step 4, the sparsity constraint is enforced through a thresholding operation.

The approach to incorporating coil sensitivity data in the reconstruction algorithm is
similar to the POCS-based parallel imaging reconstruction algorithm described by
Samsonov et al [19]. Note that this approach does not impose any constraint on the k-

space under-sampling pattern.

The multiple-coil reconstruction algorithm amounts to thresholded Landweber iterations,
which has been proved to converge with soft thresholding by Daubechies [10].
Nevertheless, we also experimentally investigate reconstruction by hard thresholding to

show the effectiveness of SWT with both soft and hard thresholding. Soft thresholding is

12 A simple approach to computing the sensitivity profiles from reference data, which is
commonly used in practice, is to divide each native coil image by the sum of squares
[21].
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x+§ ifx<-£&

N

defined as: y,(x) =< 0 if [x| <%, where p is the threshold. Similarly, hard
K 2

x—L ifx>E
2 2

x ifx<—

NIRRT

thresholding is defines as: y,(x) =<0 if |x| <

X ifo%

Brain images of a healthy volunteer were acquired at 3T using a 32-channel head coil
with a fast spin echo (FSE) pulse sequence with the following parameters: matrix:
256x256, resolution = Imm, slice thickness = 2mm, TR/TE = 3600ms/80ms, ETL = 15,
BW =+15.63 kHz, NEX = 1. A portion of k-space at the center was fully sampled to
generate the low-resolution auto-calibration data with the rest of k-space under-sampled
with variable density in the phase-encode direction. K-space data were then reconstructed
by the multiple-coil iterative thresholding reconstruction algorithm with SWT (I = Igy1)
and DWT (I' = I'sr). The experiments were repeated for a range of under-sampling
factors from 2 to 6, each with 15 sets of random under-sampling patterns generated

independently.

To further examine the applicability of SWT to multiple-coil reconstructions, the
aforementioned under-sampled data were reconstructed by the lterative self-consistent
parallel imaging reconstruction (SPIRiT) reconstruction method described in [9], where
the reconstruction problem is formulated as an optimization with calibration and

DWT/SWT [, penalties, subject to consistency with the acquired data:
ming+[[Yf*|;, + (G = DFf*|, st [[UsFf* = Elli, < € (3.8)

Where f* is now the solution consisting of every and each individual coil. Similarly F,
consists of under-sampled data acquisition for all coils. G is the SPIRIT calibration
operator and I is the unitary matrix. The difference between the SPIRIT calibration
operator and that of the traditional GRAPPA [3] is that in SPIRIT the calibration operator

is a “full” kernel independent of the under-sampling pattern, which is the same for all k-
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space positions. For more details refer to [9]. Reconstruction was performed using the
code provided by the authors with SWT, DWT, and DWT with random shifts (here after
denoted DWTRS).

Reconstruction quality was measured in terms of the normalized root mean square error
(NRMSE) with respect to the fully-sampled data. The statistical significance of the
findings was evaluated by paired comparisons of the NRMSE values based on paired t-
tests under the null hypothesis that the mean NRMSE of the DWT reconstruction in each
pair is smaller than or equal to that of SWT. Since several such t-tests were performed,
the comparisons were corrected by the Bonferroni correction with a significance level of

a = 0.05.

3.4 Results

Fully-sampled SWTI1+ TV DWTI1+ TV

Figure 3.6- Reconstruction of under-sampled SGPR data (under-sampling factor 3) by
[+ TV penalized optimization. The arrows point examples of the artifacts present in the

DWT reconstruction that are absent in the corresponding SWT reconstruction.

Figure 3.6 shows the reconstruction of the under-sampled SPGR data by SWT/DWT [; +
TV penalized optimization. The choice of the regularization parameter (a in

equation 3.6) generally affects the reconstruction performance. In order to avoid the
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possibility of giving SWT any advantage over DWT by a particular choice of «, a value
optimized for the DWT reconstruction (suggested by Lustig et al in their code) was used
for both reconstructions. The dependence of the SWT/DWT reconstructions on the
regularization parameter is more thoroughly investigated in the next experiments. The
images clearly illustrate DWT reconstruction artifacts (even with an additional TV

penalty) that are absent in the SWT reconstruction.
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Figure 3.7- Mean NRMSE and the corresponding error bars of one standard deviation for
the reconstruction of the under-sampled 32-channel FSE data by the multiple-coil

iterative thresholding algorithm.

Figure 3.7 shows the results of the repeated experiments for the reconstruction of the
under-sampled 32-channel FSE data by the multiple-coil iterative thresholding algorithm.
Clearly, the SWT reconstructions resulted in lower mean error values than the
corresponding DWT reconstructions. The mean and its 95% confidence interval of the
paired NRMSE differences of the SWT and DWT reconstructions, i.e., NRMSEgwr-
NRMSEpwr, for both hard and soft thresholding are shown in Table 3.3. Negative
NRMSE difference means with confidence intervals that do not include zero indicate that

SWT resulted in lower reconstruction errors than DWT for both soft and hard
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thresholding. Furthermore, after the Bonferroni correction all the findings were

significant.

NRMSESWT - NRMSEDWT (X10'3)

U.F. 2 3 4 5 6

Soft -3.6(37%) =0.16 -3.9(30%)%0.22 -3.2(22%)*0.18 -2.7(16%)% 0.17 -2.4(12%)% 0.18
Hard -1.2(13%)+0.12 -1.6(12%)+0.12 -1.6(11%)+0.24 -1.5(9%)+0.18 -1.7(9%)%* 0.16

Table 3.3- Mean and its 95% confidence interval of the paired NRMSE differences (i.e.,
NRMSE of the DWT reconstruction subtracted from that of the corresponding SWT
reconstruction) for the reconstructions by the multiple-coil iterative thresholding
algorithm with soft and hard thresholding for different under-sampling factors (U.F.). The
numbers in brackets show the percentage of mean improvement with SWT over DWT.

All findings in this table are statistically significant after the Bonferroni correction.

Figure 3.8 shows sample reconstructions by the multiple-coil iterative thresholding
algorithm with SWT/DWT soft/hard thresholding. As illustrated in this figure, most of
the artifacts in the DWT iterative soft/hard thresholding reconstruction are noticeably

reduced in the corresponding SWT reconstructions.

The progress of the iterative reconstruction algorithms is shown in Figure 3.9. Not only
do the SWT reconstructions result in lower reconstruction errors, the “over-convergence”
effect'® in the DWT reconstructions, which results in an increase in the reconstruction
error after a number of iterations before convergence, is not observed in the SWT

reconstructions. This is more thoroughly investigated in Figure 3.10.

1> Over-convergence occurs when the optimum for the objective function being computed
(in this case, the [; norm of the DWT coefficients) differs significantly from a desirable
reference metric (such as the NRMSE between the reconstructed and fully-sampled
images) often characterized by an initial, sharp decrease in the reference metric followed
by a more gradual increase.
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Fully-sampled

SWT- hard DWT- hard

Figure 3.8- Reconstruction of under-sampled 32-channel FSE data (under-sampling
factor 5) by the multiple-coil iterative thresholding algorithm. Arrows point to examples
of DWT reconstruction artifacts that are absent or greatly reduced in the corresponding

SWT reconstruction.
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Figure 3.9- Convergence plot of the multiple-coil iterative thresholding reconstruction
algorithm, in terms of NRMSE vs. iteration number, corresponding to the reconstructions

of Figure 3.8.

The dependence of the iterative SWT/DWT thresholding reconstructions on the choice of
the threshold is illustrated in Figure 3.10. In the interest of space, only soft thresholding
reconstructions are reported. Nevertheless, the main conclusions are applicable to hard

thresholding also.

An initial base threshold was obtained using the Birgé-Massart strategy [17], in which
the threshold is chosen such that at each decomposition level j, from 1 to j,,, n; largest
decimated wavelet transform coefficients are kept, with n; = M /(j,, + 2 — j)%, where M
is typically assumed to be equal to the length of the coarsest approximation coefficients,
and a = 3. The convergence of the iterative SWT/DWT thresholding algorithms, in
terms of the reconstruction NRMSE vs. iteration number, was studied for several

variations of the base threshold by multiplicative factors.

As shown in Figure 3.10, increasing the threshold generally resulted in increased
reconstruction error for both the SWT and DWT reconstructions as well as increased
over-convergence for the DWT reconstruction (dotted lines on the plots). On the other
hand, a moderate decrease of the threshold did not result in noticeable improvement in

the reconstruction error, nor did it alleviate the over-convergence observed with DWT,
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while a more aggressive decrease in the threshold resulted in increased reconstruction
error due to increased over-convergence for both SWT and DWT. In general the results
suggest that the Birgé -Massart strategy can be used to obtain practically optimum
thresholds for both SWT and DWT.

Clearly, regardless of the threshold, SWT results in lower reconstruction errors compared
to DWT. Additionally, the SWT reconstruction generally reaches convergence in far less
iterations than the corresponding DWT reconstruction, with no noticeable over-
convergence. (For instance compare Figure 3.10(a) with Figure 3.10(b,c): while SWT
reaches convergence in about 50 iterations, it almost takes 5000 iterations for the DWT

reconstruction to reach convergence.)

It should be noted that all the results in Figure 3.7, Table 3.3, Figure 3.8, and Figure 3.9
are obtained with thresholds obtained based on the Birgé -Massart strategy. Furthermore,
in order to avoid giving SWT any advantage due to the over-convergence of the DWT
reconstruction (see the discussion above on over-convergence, Figure 3.9, and

Figure 3.10), and since in practice the reconstructions can be terminated after a certain
number of iterations, all the results in Figure 3.7, Table 3.3, and Figure 3.8 were obtained

with 50 iterations.

Figure 3.11 shows the reconstruction performance of SWT/DWTRS/DWT SPIRiT on the
same under-sampled 32-channel FSE datasets, in terms of the mean and the standard
deviation of the reconstruction errors in the repeated experiments. Clearly SWT results in
lower error values than DWT and DWTRS. The mean and its 95% confidence interval of
the paired NRMSE differences are shown in Table 3.4. Similar to the previous
experiments, negative NRMSE difference means with confidence intervals that do not
include zero indicate that SWT resulted in lower reconstruction errors than DWT and

DWTRS with all the findings showing significance after the Bonferroni correction.

A sample reconstruction by SWT/DWTRS/DWT SPIRiT is shown in Figure 3.12. This
figure clearly illustrates that most of the DWT reconstruction (including DWTRS)

artifacts are absent or greatly reduced in the corresponding SWT reconstruction.
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(c) DWT soft thresholding

Figure 3.10- Effect of the choice of thethreshold on the convergence of the multiple-coil
iterative SWT/DWT soft thresholding algorithm for the reconstruction of under-sampled
data (under-sampling factor 5) with SWT (a) and DWT (b, c). The convergence of the
algorithms, in terms of the reconstruction NRMSE vs. iteration number, is shown for
several variations of a base threshold, T, by multiplicative factors. Since the DWT
reconstruction requires far more iterations to converge than the SWT reconstruction, an

extended plot over 10000 iterations is shown in (c) for the DWT reconstruction.
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Although reconstruction by random shifts results in reduced artifacts compared to the
simple DWT with no shifts (as an example note the reduced ringing artifacts over the
grey matter), many artifacts are still remaining that are completely removed or greatly

reduced in the corresponding SWT reconstruction.

The progress of the SPIRIT reconstructions for various regularization parameters (A in
equation 3.8) is shown in Figure 3.13. A base value T for the regularization parameter
was assumed as suggested in the code supplement to [9]. The convergence of the
algorithm, in terms of the reconstruction NRMSE vs. iteration number, was studied for

several variations of T by multiplicative factors.

The convergence plots generally conform to those of the multiple-coil iterative
thresholding algorithms in the sense that the SWT reconstruction results in lower
reconstruction error and less over-convergence. Furthermore, as expected, DWTRS falls
in between DWT and SWT both in terms of the reconstruction error and over-

convergence.
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0.01 *ﬁ% DWTRS |
0008 ﬁ 1 1 | 1 | 1 1 11
7 25 3 35 4 45 5 55 5

Under-sampling factor

MREMSE
=
e
|
%

Figure 3.11- Mean NRMSE and the error bars of one standard deviation for the
reconstruction of the under-sampled 32-channel FSE data by DWT/DWTRS/SWT
SPIRIT.
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(x10-3)

U.F. 2 3 4 5 6

NRMSEswr- NRMSEpwr  -0.67(8%) -0.91(8%) -1.2(8%) -13(7%) -1.4(7%)
+0.067  +0.082  +0.12  +0.10  +0.090

NRMSEswr- NRMSEpwrrs  -0.54(6%) -0.76(6%) -1.1(7%) -1.1(6%) -1.3(6%)
+0.066  +0.090  +013  +0.11  +0.095

Table 3.4- Mean and its 95% confidence interval of the paired NRMSE differences (i.e.,
NRMSE of the DWT/DWTRS reconstruction subtracted from that of the corresponding
SWT reconstruction) for the reconstruction of the 32-channel FSE data by
SWT/DWTRS/DWT SPIRIT for different under-sampling factors (U.F.). The numbers in
brackets show the percentage of mean improvement with SWT over the corresponding

DWT reconstruction. All findings are significant after the Bonferroni correction.

In general, variation of the regularization parameter affects all the three variations of the
discrete wavelet transform, i.e., SWT, DWTRS, and DWT, in a similar manner. That is,
while reducing the regularization parameter results in lower reconstruction errors, further
reduction beyond a certain limit results in over-convergence. Nevertheless, the SWT
reconstruction generally results in lower error values compared to the corresponding
DWT (including DWTRS) reconstructions with essentially any choice of the
regularization parameter. Additionally, SWT is generally less prone to over-convergence,
in the sense that lower reconstruction errors can be achieved with a smaller regularization
parameter with no over-convergence. Nonetheless, in order to avoid giving the SWT
reconstruction any advantage due to over-convergence, all the results reported in

Figure 3.11, Table 3.4, and

Figure 3.12 are obtained with a regularization T (corresponding to the green plot in
Figure 3.13) and at 100 iterations, i.e., around the minimum of the NRMSE curves for

DWT and DWTRS.

It is interesting to observe that the multiple-coil iterative SWT reconstructions and the
SWT SPIRIT reconstructions result in similar reconstruction quality both visually and in

terms of the reconstruction error, while the multiple-coil iterative DWT thresholding
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reconstructions suffers from more artifacts than the corresponding DWT SPIRiT

reconstructions.

{b) SPIRIT with SWT

{c) SPIRIT with DWTRS {d) SPIRIT with DWT

Figure 3.12- Reconstruction of the under-sampled 32-chnnel FSE data (under-sampling
factor 5) by SWT/DWTRS/DWT SPIRiT. The arrows point to examples of
DWT/DWTRS reconstruction artifacts that are absent in the corresponding SWT

reconstruction.
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This suggests that reasonable reconstructions can be achieved with simple [multiple-coil]
Iterative stationary wavelet transform thresholding, which is much less computational

demanding than more complex algorithms such as SPIRIT.

Furthermore, as noted previously, despite its redundancy, the non-decimated wavelet
transform can be computed very efficiently- in O(n log(n)) time. While it is still more
computationally demanding compared with the decimated wavelet transform or its
random-shits version, which can be computed in 0 (n), the visual and quantitative
improvements are very noticeable. In addition, practical implementations show small
execution time difference between SWT and DWT. (For example, the execution time for
the simple multiple-coil iterative thresholding reconstructions of Figure 3.9 were 33 and
37 seconds for DWT and SWT respectively, on an ordinary dual core 3.40 GHz PC using
MATLAB.)

3.5 Discussion and conclusion

The most important conclusion drawn from the results presented in this article is that
under-sampled MRI reconstructions based on the stationary wavelet transform (SWT)
exhibit noticeably fewer visual artifacts than the corresponding decimated wavelet

transform (DWT) reconstructions.

While quantitative quality measures, e.g., the normalized root mean square error
(NRMSE), are commonly used to measure the reconstruction performance, these
quantities do not necessarily provide a good measure of the practical quality perceived by
radiologists and other expert users of these medical images. In fact, it was called to
author’s attention by collaborating radiologists and neurosurgeons that images with a
very high quantitative reconstruction quality may still suffer from potentially critical
losses that those quantitative measures fail to capture. This issue will more thoroughly
investigated in chapter 5, in which we investigate the relationship between the
quantitative quality measures and the perceptual quality scores, as given by radiologists

and other expert users, for different reconstructions and applications.
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Figure 3.13- Effect of the choice of the regularization parameter on the convergence of
the SPIRIT reconstruction algorithm for the reconstruction of under-sampled data (under-
sampling factor 5) with several variations of the discrete wavelet transform, i.e., SWT,
DWTRS, and DWT. The convergence of the algorithm, in terms of the reconstruction
NRMSE vs. iteration number, is shown for several variations of a base threshold, T, by

multiplicative factors.

Nevertheless, the results also indicate that SWT reconstructions result in approximately
10-30% improvement in the reconstruction error compared to the corresponding DWT
reconstructions for the reconstruction of multi-channel data. This improvement is

statistically significant, and is robust to the particular reconstruction algorithm chosen.
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Additionally, SWT results in faster convergence than DWT. Also, the over-convergence
effect in the DWT reconstruction, where the reconstruction error reaches its minimum

before convergence and increases thereafter, is not observed with SWT.
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4 Similarity-based joint reconstruction in
multiple acquisition problems with
application to DESPOT1 T1 mapping

My purpose in this chapter is to show that in MRI applications involving multiple
acquisitions, e.g., Quantitative MRI: T1/T2 mapping, the structural similarity between the
acquisitions can be used as a reconstruction constraint, in addition to the (wavelet)

sparsity, to achieve improved reconstruction performance.

Without loss of generality, human brain T1 mapping by DESPOT1 based on the
acquisition of two spoiled gradient recalled (SPGR) images at optimum flip angles is
considered. K-space data in each acquisition are retrospectively under-sampled and then
jointly reconstructed by an Iterative reconstruction incorporating an additional similarity

constraint.

It is shown that joint reconstruction results in reduced visual artifacts and significantly
lower reconstruction error compared to the traditional individual reconstruction for the
reconstruction of SPGR images. Additionally, while the individual reconstruction fails to
produce T1 maps even as accurate as just a low resolution acquisition, joint
reconstruction results in significantly lower T1 map errors than both the individual and

the low resolution reconstructions.

Similarity-based joint reconstruction in multiple acquisition problems results in
significant visual/quantitative improvements over the traditional individual
reconstructions. The improvements become more important in quantitative mapping

applications that are more sensitive to reconstruction errors.
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4.1 Introduction

Since signal to noise ratio (SNR) in magnetic resonance imaging (MRI) is proportional to
voxel volume and the square root of the acquisition time [1], higher resolution and SNR
often comes at the expense of long acquisition times and patient discomfort. This, in turn,
limits how many pulse sequences can be run during a single clinical examination, which
can create difficulties for applications where multiple images should be acquired in order
to reconstruct a map of a parameter of interest, e.g., T1 and T2 mapping [2]-[4]. If
additional sequences or maps need to be acquired, the total scanning time can quickly

become excessive.

As noted in the previous chapters, one approach to reducing MRI acquisition time is to
acquire under-sampled k-space data and interpolate missing data based some a priori
reconstruction constraints, such as sparsity in a transform domain [5]. This approach is
commonly known as Compressed sensing (CS) [6], [7]. CS has also been used for MR
parameter mapping [8]-[11], which take advantage of the sparsity of the joint k-p data in
a transform domain, where p is an added dimension of the parameter of interest, to

achieve improved reconstruction quality.

In particular, Velikina et al have recently proposed to use the smoothness of the signal in
the parameter (e.g., flip angle) direction as a reconstruction constraint by penalizing a
hybrid /1/I2 norm on the first or second derivative of the signal in the parameter direction
[9]. While this is an intriguing idea, it requires a relatively large number of acquisitions in
the parameter direction, which can defeat the purpose of under-sampled reconstruction,
especially since it has been shown that two acquisitions at optimal flip angles can result
in similar accuracy as multiple acquisitions at multiple flip angles [4]. In this chapter, a
joint reconstruction based on spatial similarity, i.e., joint-entropy, of the acquisitions at

optimal flip angles is presented.

As noted previously, some MRI applications, e.g., Quantitative MRI: T1/T2 mapping,
involve sequential acquisitions of multiple images of an object where the acquisitions

differ by a single Pulse sequence parameters [2]-[4]. While these differences may affect
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the intensity, the resulting images carry similar structural information. We hypothesize
that this similarity can be used as an additional constraint to further increase the
reconstruction quality and/or k-space under-sampling factor, enabling potential savings in

acquisition time.

The structural similarity between images implies a sparse joint intensity distribution of
the images, and consequently a low joint-entropy. It is demonstrated that incoherent
under-sampling in k-space results in a loss of sparsity of the joint intensity distribution
and therefore an increase in the joint-entropy (loss of similarity), which is primarily
associated with the incoherent aliasing artifacts caused by under-sampling. On these
grounds, we develop a Similarity-promoting operation to restore the similarity between
the images by re-enforcing the sparsity of the joint intensity distribution of the images,
thereby decreasing their joint-entropy. Joint reconstruction is achieved by incorporating

the Similarity-promoting operation into an Iterative reconstruction algorithm [12].

Without loss of generality, we specifically consider DESPOT1 [4] T1 map
reconstruction, which is currently the most efficient T1 mapping technique [13], to
demonstrate my methods and results. This technique, which has been developed to
accelerate the acquisition and reconstruction of T1 maps, is based on the acquisition of

two spoiled gradient recalled (SPGR) images at the optimum flip angles.

4.2 Theory

In the following discussion a point spread function (PSF) analysis is performed to
investigate the effect of k-space under-sampling on each image and on their joint

intensity distribution.'* A Similarity-promoting operation is developed based on this

!4 Based on the principle of superposition, a linear time-invariant system can be
completely described by its response to an impulse input function. The response of an
imaging system to such an input is often described in terms of a point spread function
(PSF). Since k-space under-sampling is a linear operation [5], and with the assumption
that the imaging system does not noticeably change during a set of consecutive
acquisitions (time-invariance), | also describe the under-sampling operation in terms of
its PSF,
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analysis. This operation is then incorporated into an Iterative reconstruction algorithm to

reconstruct the images based on both their wavelet sparsity and their structural similarity.

Let f;(m,n) = ;6(n) (i = 1,2) be Kronecker delta inputs in the y direction in the spatial
domain, corresponding to the phase-encode (k) direction in k-space, where §(n) =

{1 n=20

0 n=o and (; are constants accounting for the difference in the intensity between

images in multiple-acquisition problems. The structural similarity between the images in
sequential acquisitions is modeled by placing the delta inputs in the same locations in

each image.

Incoherent k-space under-sampling is achieved by random and independent phase-encode
under-sampling operators Ur; (i = 1,2). Transforming f; to the Fourier domain, under-
sampling, and taking the inverse Fourier transform back to the spatial domain result in an

under-sampling PSFs, f,, ;:
fui=F e Ffi; i=12 (4.1)
where operators F and F ~!denote the Fourier transform and its inverse respectively.

Figure 4.1 shows the original delta inputs, the under-sampling PSFs, and their respective
joint intensity distributions. Note that since the delta inputs and the under-sampling
operations are applied in the phase-encode direction only, the point spread functions can

be represented by 1D functions.

The joint intensity distribution of the original delta inputs consists of two non-zero values
only: a spike at (0, 0) corresponding to all the zero values of f; and f,, and another at

(¢1, {3) corresponding to the peaks of f; and f,. Random and independent under-
sampling of f; and f, results in a more diffuse joint intensity distribution due to the
incoherence of aliasing artifacts between images, and therefore in an increase in the joint
entropy (H(fy, fz) = 0.037 bits, H(f,,1, fuz) = 6.9 bits, in the particular case of

Figure 4.1), i.e., reduced similarity.
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Note that the independence of the under-sampling operations is essential. While random
under-sampling of each image results in incoherent artifacts on each image, which is
desired in order to distinguish them from the image features, the independence of the
under-sampling operations ensures that these artifacts are also incoherent between
images. This incoherence results in increased joint entropy, ensuring that under-sampling
artifacts are also distinguishable in the joint intensity distribution. Note that independent
random under-sampling amounts to under-sampling both in the phase-encode and

parameter, e.g., flip angle, direction.

Delta input 1 Joint distribution: delta inputs

05 1
0 . . . .
-100 -50 0 a0 100
Delta input 2
2
15 1
1 -
05 1
0
-100 -50 0 50 100
Under-sampling PSF 1
03- 1
02- 1
: Wﬂm NMW
-100 -50 0 50 100
nder-sampling FSF 2

-100 -50 0 50 100

Figure 4.1- Effect of random and independent k-space under-sampling in terms of point

spread functions (PSF) and joint intensity distributions.
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4.2.1 Similarity-promoting operation

In general, we consider multiple acquisitions of an object resulting in images with similar
structural information. Due to this similarity, the joint intensity distribution is expected to
consist of a few sparsely distributed clusters (low joint entropy). However, based on the
above discussion, aliasing artifacts due to incoherent under-sampling in k-space result in
a loss of sparsity of the joint intensity distribution (increase in joint entropy). Therefore,
one may remove some of these artifacts by re-enforcing the sparsity of the joint intensity
distribution to decrease the joint entropy. This is in essence similar to noise/artifact
removal, based on the loss of wavelet sparsity due to the noise/artifacts, by re-enforcing

the wavelet sparsity by a wavelet thresholding operation [12], [14].

Assume under-sampled images f;, ; and f,, ,, and the joint intensity points p,, , =

(fu1(m,n), f,(m,n)). The mean of the neighborhood around p,y, ,, can be estimated as:

_ Zpi,jENpm,n K(pm,n—pi,j)pm,n
'upm.n -

(4.2)

Zpi,jENPm,n K(pm,n_pi,j)

where N.

Pmn

= {Vp; il ||pm,n — Dij || < r} is the r-neighborhood of p;, ,, and K (pm,n —

1 —p: % /262 - . .
pl-,j) = 5= lPmn=pij1"/20% is 4 Gaussian kernel function.

To sparsify the joint intensity distribution, consider shifting every point towards the mean

of its neighborhood:

ﬁm,n =DPmnt ﬁ(.upm_n - pm,n) (4.3)

where 0 < < 1 is a fixed parameter determining the shift ratio. Note that with f = 1

this is equivalent to a single iteration in the mean-shift algorithm [15], [16].

Since ppy = ( fu1(m,n), fi,.(m, n)) , fu1 and f, , can be directly updated by equation
(4.3). That is,
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(fu,l(m' Tl),fu,z (m, n)) =
(fu,1(m, n), fuz(m, n)) + B [llpm,n - (fu,l(m, n), fu2(m, n))] (4.4)

where fu,1 and fu’z are the resulting images from the above operations.

These operations decrease the joint entropy of f,, ; and f;, , by sparsifying their joint
intensity distribution. To simplify our notations, we denote the above operations by a

single similarity-promoting operation, (, such that

(fu,pfu,z) = Q{(fu,l'fu,z)} 4.5)

4.2.2 Iterative reconstruction

Assuming randomly and independently under-sampled k-space data, F,, ; (i = 1,2), and
beginning with f,,; = F _1Fu,i,15 one can remove some of the aliasing artifacts and
thereby improve the resulting image by the application of a wavelet sparsity, i.e., wavelet

thresholding, operation, I':

fi=T{f,i} 4.6

Note that this is based on the a priori assumption that MR images have a sparse
representation in the wavelet domain [5]. In practice, the threshold can be obtained

adaptively using a wavelet coefficient selection rule, e.g., the Birge-Massart strategy [17].

The aliasing artifacts can be further removed by the application of the aforementioned

similarity-promoting operation:

(£ f2) = o{(fu. 2)} 4.7)

'* This is usually called a minimum energy reconstruction since among all the solutions
matching the original k-space data F,, ;, it has the lowest energy because unobserved k-
space samples are simply replaced by zero.
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Joint reconstruction algorithm

Inputs:

F, 1, F, »: Under-sampled k-space dada
U 2, Up 5: Under-sampling operations selecting k-space data

Output:

Frec1) Frec2: Reconstructed k-space data

Algorithm:

// Initialize to the minimum energy reconstruction
Frec,l « Fu,l

Frec,z < Fu,Z

//Reconstruct through iterative thresholding
while not converged do

end

frec,l « :F_lFrec,l

frec,z « :F_lFrec,Z
//wavelet sparsity-promoting
]il = F{frec,l}

f2 = I“{frec,z}
//similarity-promoting
(fl:fz) = Q{(fpfz)}
//data consistency

Fl <Fh

Fz « sz

Frec1 <« Fy —Up by +Fyq
Freco <« Fo = Upaby + Fy

Table 4.1- Joint reconstruction algorithm

While these operations should have revealed more features of the images by removing

some of the aliasing artifacts, they may also have affected the known k-space samples as

originally measured. Mathematically, UF_l-ﬁ'i # F,; = Ug;F; (i = 1,2), where F, = Ff;is

the Fourier transform of f;. In other words, if F; is under-sampled in the same manner

that k-space data were originally acquired, the resulting under-sampled data will not

necessarily be consistent with the original under-sampled k-space data. Therefore, before

further progress, the known k-space samples are recovered: Fi(l) =F —Up;F; + F,;.

Transforming to the spatial domain, fi(l) are better estimates ot f; than f,, ;, since some of

the unknown Fourier coefficients, which are replaced by zero in F, ;, take an estimated

value in P;(l).
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These estimates can be improved by applying the above procedure in an iterative manner.

The joint reconstruction algorithm is shown in Table 4.1.

The algorithm is initialized with the minimum-energy reconstructions, fi(o) = fui>and

continues until a convergence criterion is reached, e.g., changes between iterations are

l

below a predefined threshold, fi(n) — f-(n_l) | / | fi(n)| < €, or a maximum number of

iterations is reached.

4.3 Methods

SPGR brain images of healthy volunteers and temporal lobe epilepsy (TLE) patients were
acquired at 3T using a GE scanner (Discovery 750, software revision 22M32, General
Electric Healthcare, Waukesha, WI) with flip angles 4° and 18°, with the following
parameters: matrix: 256x256, resolution = 0.86mm isotropic, slice thickness = 1mm,
TE/TR = 4.1ms/8.9ms, BW =+£19.23 kHz, flip angle = 18°, NEX = 1. Human data used
in this work were acquired using a protocol approved by the Western University Office of

Research FEthics.

The first set of experiments compared reconstruction methods on multiple images while
keeping the under-sampling pattern constant to reduce the dependence of the comparison
on the choice of under-sampling pattern. A total of 5 healthy volunteer and 10 TLE
patient datasets were used. Fully-sampled k-space data were employed as the reference
standard. Each dataset was then retrospectively under-sampled by randomly and
independently under-sampling the k-space datasets corresponding to acquisitions at flip
angles 4° and 18°, along the phase-encode direction with variable density. All datasets
were under-sampled with the same randomly and independently selected under-sampling

patterns.

Corresponding under-sampled slices (at flip angles 4° and 18°) were jointly reconstructed
as described above, and the corresponding T1 map was computed by DESPOT1. The
same datasets were also reconstructed based on either wavelet sparsity only or similarity

only. The former is achieved by removing the similarity-promoting operation in the
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described iterative algorithm and the latter by removing the wavelet sparsity-promoting
operation. For clarity, we call the former individual reconstruction and the latter entropy-
only reconstruction. The reconstructions were also compared with the low resolution
sampling with the same under-sampling factor, achieved by fully sampling the center of
k-space and zero-padding the remainder, i.e., interpolation by a sinc kernel in the spatial
domain. These experiments were repeated for a range of under-sampling factors from 2 to

6.

Another set of experiments was performed to study the effect of various under-sampling
patterns. One healthy volunteer dataset was under-sampled with 15 pairs of under-
sampling patterns selected independently based on a Gaussian probability density
function. Similar to the previous set of experiments, the under-sampled datasets were
reconstructed jointly and the results compared with individual, entropy-only, and low

resolution reconstructions as described above.

All the algorithms were implemented in MATLAB (MathWorks, Inc., Natick, MA). In
all the experiments the reconstruction quality was measured in terms of the normalized
root mean squared error (NRMSE) of the reconstructed images and the T1 maps with
respect to the fully sampled data. To eliminate error due to background noise, the
NRMSE was computed over the support of the image, excluding the background. The
support was computed automatically by binarizing the image based on a threshold and
fitting a convex hull to the binary image. The threshold was chosen using the Otsu’s

method [18].

The statistical significance of the findings was evaluated using paired t-tests. Since
several such t-tests were performed, the comparisons were corrected by the Bonferroni
correction in which each individual hypothesis is tested at a statistical significance level
of a/n to achieve the desired significance level of a for the whole set of experiments,

where n is the total number of tests. In this thesis we used a = 0.05.

Although NRMSE is a measure of the global error with respect to the reference standard,

it fails to capture local artifacts, which may be of more interest in practice. To illustrate
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the local effects of each under-sampled reconstruction method on the computed T1 map,
we define three regions of interest (ROI) in the white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF) and show the distribution of the reconstructed T1 values on

each ROI and those of the reference standard using box plots.

4.4 Results

Figure 4.2 shows the mean NRMSE values along with corresponding error bars of one
standard deviation for the reconstruction of the 15 SPGR datasets in the first set of
experiments. Joint reconstruction is compared with both individual and entropy-only
(E.O.) reconstructions. The results are also compared with low resolution reconstruction.
The statistical significance of the results, determined by paired t-tests, is shown in

Table 4.2.

In terms of the SPGR images, joint reconstruction significantly improved the NRMSE
compared to individual reconstruction at all but very low and high under-sampling
factors, and both consistently outperformed all other reconstruction methods evaluated.
This is expected since both methods exploit wavelet sparsity, which is a well-established
in compressed sensing and sparse recovery. The entropy-only reconstruction did not
perform better than low resolution reconstruction indicating that the Similarity-promoting
operation by itself was not sufficient to reconstruct images. However, when combined
with wavelet thresholding in joint reconstruction, the entropy promoting operation further

improves the reconstruction.

In general, the T1 maps derived from the two SPGR reconstructions exhibited a higher
NRMSE than either SPGR image as the DESPOT calculations are very sensitive to errors
in the SPGR images. Somewhat counter-intuitively, however, the T1 map derived from
the low resolution SPGR images performed better than the T1 map derived from the
individual reconstructions of the SPGR images even though the individual
reconstructions had a lower NRMSE than the low resolution SPGR images. Nevertheless,
the joint reconstruction still obtained significantly lower T1 NRMSE values compared to

all other reconstructions with the exception of low resolution reconstruction at high
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under-sampling factors (4.5 and higher in Table 4.2). It is interesting to note that at an
under-sampling factor of 4 the joint reconstruction resulted in an RMSE approximately
15% lower than the individual reconstruction of SPGR images but 45% in the
reconstruction of a T1 map. A more thorough investigation of these findings is presented

at the end of this section.

Figure 4.3 shows the mean NRMSE values along with corresponding error bars of one
standard deviation for the reconstruction of one healthy volunteer dataset with 15
different sets of under-sampling patterns in the second set of experiments. The statistical

significance of the results is shown in Table 4.3.

2 2.5 3 3.5 4 4.5 5 5.5 6

[TI2THAR2TYLI2Z TYITI2 T2 THILI2 THITI2 TYITI2 T1I112 T1
Joint-Indiv + + ++ [+ ++ [+ ++ |+ o+ + + + +
Joint-E.O. i e S o R e e e A o N e e S L S o S O
Joint-Lowres|+ + + [+ + + |+ + + |+ + + |+ + + |+ + + + + + + +
Indiv-E.O. + + + + + + + + + + + + + + + + + +
Indiv-Lowres[+ + + + + + + + + + - |+ +- - +F- -
E.O-Lowres. |- - + + + + - + - - - - -

+ statistical significance under the null hypothesis that the NRMSE of the second reconstruction is
lower than the first one in each pair;

- statistical significance under the inverse null hypothesis, i.e., the NRMSE of the first reconstruction
is lower than the second one;

Otherwise, no statistical significance observed

Table 4.2- Statistical significance of NRMSE comparisons for the reconstruction of 15
different datasets. The results of paired t-tests for image 1, image 2, and the T1 map are

shown.

The results generally follow the same trend as in the previous set of experiments.
However, the NRMSE values generally show smaller deviation and consequently
stronger statistical significance is observed. This indicates that the variation in
reconstruction quality from randomly choosing the under-sampling patterns from a
Gaussian probability density is relatively small compared with the variation in

reconstruction quality between subjects.
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Figure 4.2- Mean NRMSE values and corresponding error bars of one standard deviation

for the reconstruction of 15 SPGR pairs from under-sampled k-space data and derived T1

map. For clarity, the error bars are shown at increments of 0.5. However, the growth in

the error bars follows a consistent trend.
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While the NRMSE values from low resolution reconstruction of the SPGR images are
higher than those of the joint and individual reconstructions, the NRMSE values of the
derived T1 map is lower than those of the individual reconstructions and comparable to
those of the joint reconstructions, especially at high under-sampling factors (see

Figure 4.2 and Figure 4.3). This behavior is unexpected, especially considering the rather
well behaved NRMSE curves of the SPGR images.

2 2.5 3 3.5 4 4.5 5 5.5 6

[TI2TYHII2THLI2 THILI2 THITI2 T2 THITI2 THITI2 T1I112 T1
Joint-Indiv + 4+ [+ ++ [+ ++ [+ ++ [+ ++ +++ |+ ++ [+ A+ +
Joint-E.O. + ++ [+ ++ [+++ ++++++++++++ [+++ |+ ++
Joint-Lowres [+ + + [+ + + |+ + + |+ + + |+ + + + + + + + + + -
Indiv-E.O. +++ |+ A+ [+ o+
Indiv-Lowres[+ + + + ++- H++- HF+- F+H- - -+
E.O.-Lowres |- - - I T o S e A o T & R O -
+ statistical significance under the null hypothesis that the NRMSE of the second reconstruction is

lower than the first one in each pair;

- statistical significance under the inverse null hypothesis, i.e., the NRMSE of the first reconstruction
is lower than the second one;

Otherwise, no statistical significance observed

Table 4.3- Statistical significance of NRMSE comparisons for the reconstructions with 15
different sets of under-sampling patterns. The results of paired t-tests for image 1, image

2, and the T1 map are shown.

This observation can be explained by looking at the effects of error in the two intensity
images on the final T1 values determined by DESPOT1. The T1 values are calculated
from the slope of the signal intensity equations in linearized form (see the DESPOT1
overview in the Introduction section). In Figure 4.4(a) we plot the error in DESPOTI1
reconstruction as a function of the percentage error in the two SPGR images using the
same imaging parameters as the experiments and intensity values taken from white
matter. In DESPOTI, it is not the magnitude of the errors that affects the quality of the
DESPOTT reconstruction, but the relationship between errors in the two images.
Figure 4.4 (b-d) show scatter plots showing the joint distribution of errors of intensity
values in the two SPGR images as a percentage of the fully-sampled intensity values at

each pixel. The error in T1 is zero along the 45° line marked on the graph, as changing
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the intensity values in both images by the same factor does not affect the DESPOTI1

calculations and the error in T1 values increases with distance from this line.
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—&— Joint
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Figure 4.3- Mean NRMSE values and corresponding error bars of one standard deviation
for the reconstruction of SPGR images and derived T1 maps of one healthy volunteer
from 15 independently under-sampled datasets. For clarity, the error bars are shown at

increments of 0.5. However, the growth in the error bars follows a consistent trend.
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These plots show that the low resolution reconstruction resulted in errors in the estimated
intensity values that are highly correlated between the two images. This is expected as the
low resolution sampling is equivalent to smoothing the reference standard images with a
sinc kernel. Although the contrast between the two intensity images is different, the basic
structure, and much of the overall intensity pattern remains the same. This resulted in a
distribution of the intensity errors clustered along the 45° line. On the other hand, the
wavelet sparsity based reconstruction methods result in a less correlated intensity error
distribution. The net result is that the errors incurred from acquiring a low resolution

image, though larger than the individual wavelet reconstruction, had less impact on the

computed T1 values.

The joint reconstruction technique continued to perform better than either of these
methods at low and middling under-sampling factors. We observed in Figure 4.4 that the
errors in the joint reconstruction were more correlated than the individual reconstruction.
The similarity-promoting operation was designed to cluster the SPGR intensity values to
reduce the joint entropy. As the two images were very positively correlated, this

clustering also increased the positive correlation between the errors in SPGR intensity

values pushing them towards the 45° line.

(d) Low resolution

(a) (b) Individual (c) Jaint
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Figure 4.4- The DESPOT1 T1 error is shown as a function of the error in the intensity
images in (a) and the distribution of errors in the intensity images is shown for individual

reconstruction (b), joint reconstruction (c¢) and low resolution image (d) acquired with an

under-sampling ratio of 4.

Figure 4.5 provides a visual illustration of a typical reconstruction of the SPGR images

and derived T1 map for an under-sampling factor 4.
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Figure 4.5- Reconstruction of SPGR images at flip angles 4° and 18° with an under-
sampling factor of 4, and T1 map computed using DESPOT1. The zooming area is
shown by the white box. The arrowhead points to an example of aliasing artifacts

present in individual reconstruction that are removed by the joint reconstruction.
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Figure 4.6- Box plots of T1 values over three local ROIs (shown in Figure 4.7) on the
WM, GM, and CSF, at an under-sampling factor of 4. The central mark in each box is the

median and the edges of the box are the 25™ and 75™ percentiles.

The box plots in Figure 4.6 show the distribution of T1 values for the different
reconstruction methods and fully sampled reference standard over three local ROIs, with
the ROIs shown in Figure 4.7. The individual and entropy only reconstructions resulted
in wider quartiles and more variation in T1 values in CSF, white matter and grey matter.

However, both the joint and low resolution reconstruction resulted in white matter and
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grey matter distributions that closely matched the reference standard. For CSF, the low

resolution reconstruction produced a distribution similar to the reference standard while
the joint reconstructions resulted in slightly less variation as seen from the inner quartile
range of the box plots. However, it should be recalled that the flip angles for DESPOT1

are optimized to reconstruct T1 values for white matter and grey matter.

Figure 4.7- Three ROIs representative of white matter (green), gray matter (blue), and

cerebrospinal fluid (red), over which the distribution of the T1 values are computed.

4.5 Discussion

The experimental results presented in the previous section confirm my hypothesis that the
structural similarity between images acquired at different flip angles can be incorporated
as an additional under-sampled reconstruction constraint to improve the reconstruction
quality of the images. In particular, the results suggest that joint reconstruction with both
similarity and wavelet sparsity constraints can significantly reduce the reconstruction
error compared with individual reconstruction based on wavelet sparsity alone. This

improved reconstruction quality can make higher under-sampling factors realizable.

We observed that errors in the T1 map depend not only on the errors in the reconstruction
of the individual images, but also on how correlated these errors are. Consequently, while
under-sampled reconstruction techniques (like those presented in chapters 2 and 3) may

improve the quantitative quality metrics of single images, when these images are used for

a more complicated calculation like DESPOT]1 this does not necessarily translate into
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improved results. Joint reconstruction overcomes this issue, improving the NRMSE of

both the SPGR images and the derived T1 map.

Finally, the performance of the Similarity-promoting operation depends on the shift ratio
(B in equation (4.4)), the choice of which is dependent on the application. Nevertheless,
once set for a particular application, e.g., DESPOT1 with certain flip angles, the shift

ratio can be used for all other such acquisitions.

4.6 Conclusion

I showed that in MRI applications involving multiple acquisitions, e.g., Quantitative
MRI: T1/T2 mapping, the structural similarity between the acquisitions can be
incorporated as a reconstruction constraint, in addition to the conventional (wavelet)
sparsity constraints, for the reconstruction of the MR images from under-sampled k-space

data to reduce the acquisition time.

An Iterative reconstruction algorithm was used to jointly reconstruct the images by
alternating between the spatial, wavelet, and frequency domains, in which the similarity,

wavelet sparsity, and data consistency constraints are re-enforced respectively.

Without loss of generality, we considered DESPOT1 T1 mapping from two spoiled
gradient recalled (SPGR) images, acquired at two optimum flip-angles. Human brain
SPGR images were acquired at 3T. K-space data were incoherently under-sampled, and
the images were jointly reconstructed from the under-sampled data by the proposed

Iterative reconstruction.

Joint reconstructions resulted in significantly lower reconstruction errors compared to a
more traditional compressed sensing reconstruction of both SPGR images individually.
This improvement became even more important when examining the T1 maps generated
from the two under-sampled SPGR reconstructions. While the SPGR individual
reconstructions substantially outperformed a low resolution acquisition with the same
number of scans lines, the T1 map derived from the individual reconstruction was inferior

to the T1 map derived from low resolution acquisitions. This demonstrates the difficulty
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in using multiple compressed sensing acquisitions for quantitative calculations. However,
the joint reconstruction method, which promotes structural similarity between the
acquisitions as well as wavelet sparsity, produced T1 maps with significantly less error
than those attained from either individual or low resolution reconstructions for a wide

range of under-sampling factors.
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5 Driven equilibrium single pulse
observation of T1 with high-speed
incorporation of RF field
inhomogeneities (DESPOT1-HIFI)

During the course of these PhD studies, DESPOT1/DESPOT2 T;and T,mapping were
frequently used. This inevitably involved a closer inspection of the pulse sequences,
which resulted in a modification to an extension of DESPOT, known as DESPOT-HIFI,
which addresses some limitations of the conventional DESPOT due to RF field
inhomogeneities at high magnetic fields (3T and above). In this chapter, a modified
version of DESPOT-HIFI resulting in more accurate estimation of T1 values at high

magnetic fields is presented.

5.1 Introduction

As noted in section 1.3.1, The driven equilibrium single pulse observation of T1
(DESPOT1) is a fast and robust T1 mapping technique based on acquisition of spoiled
gradient echo images [1]—[3]. This technique is currently considered the most efficient

quantitative mapping technique [4].

In conventional DESPOT1 a T1 map is derived from two spoiled gradient recalled
(SPGR) images acquired at optimal flip angles [2], [3]. The SPGR signal intensity, Sspgr,
is a function of the longitudinal relaxation time, T;, repetition time, TR, flip angle, a:

p(1-E{)sina
1-E;cosa

(5.1)

Ssper =

Where E; = exp (— TT—R) , and p is a factor proportional to the longitudinal magnetization.
1
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By holding TR constant and incrementally increasing «, a curve characterized by T; is

generated, which can be represented in a linear form (Y = mX + b) as:

S S
St =E 2+ p(1 - Ey) (5.2)

sina 1 ta

The slope, m, and intercept, b, can be estimated by linear regression, from which T; and

p can be extracted:
T, = —-TR/In(m) (5.3)
and

p=b/(1—-m) (5:4)

While this approach permits rapid T1 mapping, the estimated T; and p values are very
sensitive to the variations of the transmitted flip angle from the prescribed value, which
can result in inaccuracies due to RF field inhomogeneity. In particular, at high magnetic
field strengths, such as 3T or above, or when nonsymmetrical RF surface coils are used,
the homogeneity of the RF B, field cannot be ensured. In such cases, the variations of the
transmitted flip angle with respect to the prescribed value is often modeled as ar = kap,

where k denotes the spatial variations of the RF field [5].

In order to account for the spatial inhomogeneity of the RF field, and therefore achieve
improved accuracy in the computed T1 map, in [5] Deoni proposed to acquire an
additional inversion-recovery SPGR (IR-SPGR) image, and solve for k, T;, and p with
the combined SPGR and IR-SPGR data. This method is called Driven equilibrium single
pulse observation of T1 with high-speed incorporation of RF field inhomogeneities

(DESPOT1-HIFI).

Although this approach provides a promising solution for RF field inhomogeneity, the
IR-SPGR signal equation used in [5] is incorrect. In IR-SPGR the inversion pulse is

followed by a train of spoiled gradient echo pulses. Nevertheless, the signal equation
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used in [5] is that of an inversion-recovery spin echo (IR-SE) sequence, which does not

apply to IR-SPGR.

This chapter provides a modified IR-SPGR signal equation. The modification is

evaluated by phantom and in vivo imaging experiments at 3T.

5.2 Theory

IR-SPGR involves the application of a 180° pulse followed by a delay of T, and a train
of low-angle SPGR pulses, which sample successive lines of k-space [5]. The
perturbation due to the SPGR pulse train causes the longitudinal magnetization to recover
with a different effective time constant [6], [7]. Nonetheless, if the center of k-space is
acquired immediately after the inversion pulse, and a moderate number of RF pulses (up
to 128) with a low flip angle (<10°) is applied after each inversion, the longitudinal

recovery can be assumed to follow the regular T; recovery [5]. Therefore,
M,(Tr™) = M,(0")e /T + My(1 — e~ T7/T) (5.5)
where T is the time between successive inversion pulses.
Assuming an adiabatic inversion:
M,(0%) = —M,(07) (5.6)
Additionally, at steady state:
M,(07) = M,(Tr") (5.7)

Combining equations (5.5), (5.6), and (5.7), the longitudinal magnetization at the

beginning of each inversion cycle at steady state is calculated:

-Tr
M,(0") =My (5.8)

-Tr
1+e /Ty
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Figure 5.1- Comparison of the original and the modified IR-SPGR equations for three T;
values representative of the white matter (T;=900ms), grey matter (T;=1500ms), and the
cerebrospinal fluid (T;=3000ms) at 3T. The longitudinal magnetization normalized by M,

is plotted for different values of 77 for each case.

based on which, the longitudinal magnetization at time T1 at each inversion cycle is

derived:

_o Tty —TI -TI
M(TI7) = =My e /it My (1-e” /) (5.9)

1+e_Tr/ T1
The IR-SPGR signal is consequently derived. With some algebraic simplifications:

=TI
2e /T1

— _—TT/T1> sinka, (5.10)
e

1+

SirR-spPGR = P (1

www.manaraa.com



where p is a factor proportional to M,, and includes T, transverse decay term, e

and Bjreceive field effects.

Figure 5.1 compares the original and the modified IR-SPGR equations for three T1

values representative of the white matter, grey matter, and the cerebrospinal fluid at 3T.

A unique solution for k, Ty, and p is derived by least squares minimization of the
combined SPGR and IR-SPGR data to equations (5.1) and (5.10), i.e., minimization of
the function:

2

NTI —TI/T
1
f(p, Ty, k) = z ( =T >5in’<“p,i - SIR—SPGR,i]
i= 1+e T

1—-E;cosa,;

Na . 2
p(1—Ej)sina, ;
+ZI = — SspGR,j
j=1

5.3 Materials and Methods

Phantom experiments were carried out using a custom made agarose gel phantom
comprising 9 nickel chloride doped agarose tubes with the following concentrations: {0,
0.47,0.7, 1.06, 1.58, 2.37, 3.56, 5.34, 8} mM/I. Reference T1 values were determined by
acquiring 2D inversion-recovery fast spin echo (IR-FSE) data at 3T with the following
parameters: matrix: 256x256, TE/TR=11.24 ms/5000 ms, TI={100 , 400, 800, 1500,
3000} ms, ETL= 16, BW=x15.63 kHz, NEX=0.5. DESPOT1-HIFI data were acquired at
3T with the following parameters: matrix: 256x256x160, resolution = 1mm isotropic,
TE/TR = 3.71ms/8.36ms, BW = +19.23 kHz, NEX=1. IR-SPGR data were acquired with
TI=450 ms, and a,,=5". SPGR data were acquired with a,,=4" and 18".

Reference T1 maps were computed by a 3-parameter fit to the IR-FSE data [8]. T1 maps
were computed by the conventional DESPOT]1 (i.e., DESPOT1 with no RF
inhomogeneity correction) with the two SPGR acquisitions, as well as by DESPOT-HIFI
based on the modified and the original IR-SPGR signal intensity equations. The former is
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referred to as the modified DESPOT-HIFI and the latter is referred to as the original
DESPOT-HIFI. The results were compared against the reference IR-FSE T1 values over
each of the 9 tubes.

Human brain data of two healthy volunteers were acquired using the same pulse
sequences described above at 3T. Human data used in this work were acquired using a

protocol approved by the University of Western Ontario Office of Research Ethics.

Similar to the phantom experiments, T1 maps were computed by the conventional
DESPOT]1 and by the original and modified DESPOT-HIFI and compared against the

reference IR-FSE T1 values for different tissues.

5.4 Results

T1 values computed over each of the tubes in the agarose phantom by the conventional
DESPOT and by the original and modified DESPOT-HIFI are compared against the
reference IR-FSE values in Figure 5.2. While the conventional DESPOT and the original
DESPOT-HIFI result in underestimated and overestimated T1 values respectively, the

modified DESPOT-HIFI results in the most consistent values with the gold standard.

Figure 5.3 compares the computed T1 values with the contrast concentration for each
tube. The T1 values obtained by the modified DESPOT-HIFI follow those of the
reference IR-FSE very closely. Additionally, DESPOT-HIFI results in higher correlation

between the T1 values and the contrast concentration than the conventional DESPOT.

Figure 5.4 plots T1 values computed by the conventional DESPOT and the original and
modified DESPOT-HIFI versus reference values computed based on the IR-FSE
acquisitions over three regions of interests (ROI) on white matter, grey matter, and the
cerebrospinal fluid for each volunteer. The results generally show the same trend
observed with the phantom data. Computed T1 values with different methods are also
compared against each other over a few anatomies of interest in Figure 5.5. Sample T1
maps, computed by the original and modified DESPOT-HIFI, and the conventional
DESPOT, for one of the healthy volunteers are shown in Table 5.1. The results confirm
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that the modified DESPOT-HIFI results in T1 estimates most consistent with the

reference T1 values.
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Figure 5.2- Mean T1 values for each tube in the agarose phantom, computed by
conventional DESPOTT1 and by the original and modified DESPOT1-HIFI versus
reference values determined by IR-FSE. The errorbars denote one standard deviation.

Linear regressions and the line of unity with the reference T1 values are also shown.

5.5 Discussion and conclusion

While the conventional DESPOT provides an efficient way of computing T1 maps based
on the acquisition of two SPGR images at optimal flip angles, it often results in
consistently under-estimated T1 values at high magnetic fields, i.e., 3T and above, due to
RF field inhomogeneities causing deviations of the transmitted flip angle from that
prescribed. To address this problem, Deoni proposed the acquisition of an additional IR-
SPGR image to account for the RF field inhomogeneities simultaneous with T1/M0
estimation through least squares minimization of the combined SPGR and IR-SPGR data
to the corresponding signal intensity equations. However, the assumed signal intensity

equation for the IR-SPGR acquisition is incorrect resulting in consistently overestimated

www.manaraa.com



Page |103

T1 values. In this chapter, we proposed a modification by deriving the correct IR-SPGR

signal intensity equation. The proposed modification was validated on a custom made

agarose gel phantom doped with different concentration of nickel chloride resulting

different T1 values as well as for in vivo human brain T1 mapping. The modified

DESPOT-HIFI results in T1 values much more consistent with the reference values

computed based on a number of IR-FSE acquisitions.
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b 2000
1500
1000
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0 4
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Y=44T67XF 24492 K&
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Figure 5.3- Mean T1 values, computed by the conventional DESPOT]1, the original and
modified DESPOT1-HIFI, and the IR-FSE reference, for each tube in the agarose

phantom, versus nickel chloride concentration of the tube.
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Figure 5.4- Mean T1 values computed by the conventional DESPOT and by the original
and modified DESPOT-HIFI versus reference values computed based on IR-FSE
acquisitions over three regions of interests (ROI) on white matter (WM), grey matter
(GM) and cerebrospinal fluid (CSF). WM ROl includes areas on the frontal lobe, parietal
lobe, and corpus callosum, GM ROI includes areas on the cerebral cortex and the caudate
nucleus, and CSF ROI includes areas on the lateral ventricle. The errorbars denote one

standard deviation. Linear regressions and the line of unity with the reference T1 values

are also shown.
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Figure 5.5- Mean T1 values with the errorbars of one standard deviation computed by the

conventional DESPOTI, the original and modified DESPOT1-HIFI, and the IR-FSE

reference over some anatomies of interest.
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Modified DESPOT-HIFI Original DESPOT-HIFI Conventional DESPOT

Table 5.1- Sample T1 maps computed by the original and modified DESPOT-HIFI and
by the conventional DESPOT]1 for a healthy volunteer.

5.6 References

[1] J. Homer and M. S. Beevers, “Driven-equilibrium single-pulse observation of T1
relaxation. A reevaluation of a rapid ‘new’ method for determining NMR spin-
lattice relaxation times,” J. Magn. Reson. 1969, vol. 63, no. 2, pp. 287-297, Jun.
1985.

[2] H.Z.Wang,S. J. Riederer, and J. N. Lee, “Optimizing the precision in T1 relaxation
estimation using limited flip angles,” Magn. Reson. Med., vol. 5, no. 5, pp. 399-416,
1987.

[3] S.C.L.Deoni, B. K. Rutt, and T. M. Peters, “Rapid combinedT1 andT2 mapping
using gradient recalled acquisition in the steady state,” Magn. Reson. Med., vol. 49,
no. 3, pp. 515-526, Mar. 2003.

[4] D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. L. Sunshine, J. L. Duerk, and M. A. Griswold,
“Magnetic resonance fingerprinting,” Nature, vol. 495, no. 7440, pp. 187-192, Mar.
2013.

www.manaraa.com



[5]

[6]

[7]

[8]

Page |107

S. C. L. Deoni, “High-resolution T1 mapping of the brain at 3T with driven
equilibrium single pulse observation of T1 with high-speed incorporation of RF field
inhomogeneities (DESPOT1-HIFI),” J. Magn. Reson. Imaging JMRI, vol. 26, no. 4, pp.
1106-1111, Oct. 2007.

D. C. Look and D. R. Locker, “Time Saving in Measurement of NMR and EPR
Relaxation Times,” Rev. Sci. Instrum., vol. 41, no. 2, pp. 250-251, Feb. 1970.

G. Brix, L. R. Schad, M. Deimling, and W. J. Lorenz, “Fast and precise T1 imaging
using a TOMROP sequence,” Magn. Reson. Imaging, vol. 8, no. 4, pp. 351-356,
1990.

C.Y.Tongand F. S. Prato, “A novel fast T1-mapping method,” J. Magn. Reson.
Imaging, vol. 4, no. 5, pp. 701-708, 1994.

www.manharaa.com



Page | 108

6 Subjective reconstruction quality
assessment

So far throughout this thesis the assessment of the quality of reconstruction achieved by
different methods and how different reconstructions compare against each other was
solely based on quantitative measures, e.g., the reconstruction error with respect to the
fully-sampled reference. However, although useful to some extent, these quantitative
measures do not necessarily correlate completely with the perceptual quality judgment
made by radiologists and other expert end users. Consequently, unless accompanied by
subjective clinical evidence, any conclusion solely based on quantitative evidence is of
limited clinical impact. Therefore, a number of experiments were carried out with the
help collaborating radiologists, aiming at subjective quality assessment and comparison
of under-sampled reconstruction techniques, the results of which is presented in this

chapter.

6.1 Introduction

As described in the previous chapters, which were primarily focused on Under-sampled
MRI reconstruction, signal-to-noise ratio (SNR) in magnetic resonance imaging (MRI) is
proportional to the voxel volume and the square root of the acquisition time [1], which
implies that reasonably high resolution and SNR are only achieved at the expense of long
acquisition times. Therefore, acceleration of MRI acquisitions without compromising the
resolution and/or SNR has been an active field of research since the introduction of this
modality [2] (and references therein). In addition to advancements in hardware and pulse
sequence design, two major categories of acceleration techniques are Parallel imaging
[3]-[5] and Compressed sensing [6], both of which reduce the acquisition time by
acquiring under-sampled k-space data. However, in the former approach missing k-space
data are interpolated based on the knowledge of the coil sensitivity profiles, while the

latter interpolates the missing data by imposing a sparsity constraint in a transform
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domain on the image. Under-sampled reconstruction techniques based on joint

application of parallel imaging and compressed sensing have also been developed [7].

Although quantitative quality measures, such as the normalized root mean square error
(NRMSE), contrast-to-noise ratio (CNR), and SNR, are commonly used to assess the
reconstruction quality of these techniques, these measures do not necessarily completely
correlate with the practical image quality as perceived by radiologists and other expert
end users. A few authors have attempted to assess the under-sampled reconstruction
quality based on subjective scoring of the images for parallel imaging [8], [9] and

compressed sensing [10].

In this chapter we present the results of my study on the subjective quality measurement
of compressed sensing, and combined compressed sensing and parallel imaging (where

multiple-channel data are available) reconstructions.

6.2 Methods
6.2.1 Study design

While the performance of parallel imaging techniques generally depends on hardware
specifications of the imaging system, e.g., number of channels and the g-factor [2], the
performance of compressed sensing reconstructions is determined by the underlying
image- it is known that compressed sensing generally does better with images with a
sparser representation in the sparse transform domain, an example of which is magnetic
resonance angiography (MRA) images, which often result in very sparse transform-
domain representations [6]. Furthermore, clinical applications vary in terms of their
resolution requirements and susceptibility to reconstruction artifacts. Therefore, it is
expected to achieve varying degrees of performance/improvement by compressed sensing
depending on the application. In this chapter three common clinical applications of MRI
in neuroradiology are considered: detection of white matter lesions, cranial nerve

imaging, and magnetic resonance angiography (MRA).
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6.2.1.1 Detection of white matter lesions

This task involves detection of small non-specific white matter lesions on T2-FLAIR
images. Artificial but realistic white matter lesions were incorporated onto FLAIR brain

images of a healthy volunteer as follows:

A typical white matter lesion was identified on T2-FLAIR brain image of a multiple
sclerosis patient by a senior neuroradiology resident. The lesion was cropped from a 2D
slice (approximate lesion size = 2.5mm in diameter). Whole-brain T2-FLAIR images of a
healthy volunteer were also acquired (TR/TE=8000ms/120.9ms, TI=2250m:s, flip
angle=90°, matrix=256x256, BW = 0.86mm isotropic), slice thickness=2mm, slice
spacing=2.5, BW=31.3kHz, NEX=1), based on which test images were generated by
artificially incorporating the lesion into the acquired axial 2D FLAIR images in random
locations in the cerebral white matter where these lesions are commonly seen clinically,
with a probability of 50%. In order to preserve the SNR on the destination image,
merging was carried out by manipulating the intensity levels on the destination image to
match those of the lesion relative to its background. Figure 6.1 shows a sample test image
generated in this manner. Human data used in this work were acquired using a protocol

approved by the University Of Western Ontario Office Of Research Ethics.

Figure 6.1- Sample white matter lesion artificially incorporated in a FLAIR image.
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The test images, generated as described above, were under-sampled in the Fourier
domain to generate low-resolution and compressed sensing under-sampled
reconstructions. Low-resolution reconstruction was used as a control baseline. For
compressed sensing, under-sampling was done based on a variable density scheme
appropriate for compressed sensing [6]. Compressed sensing reconstruction was carried
out using Iterative stationary wavelet transform thresholding. The set of test images
included under-sampling factors 1, i.e., no under-sampling, 2, 3, 4, and 5, each with 30
images for each reconstruction (low-resolution and compressed sensing) totaling to 300

images.

The images were viewed by 3 senior radiology residents in randomized orders. The
experiments involved identification of the lesion or declaring there is none, while the
participants also indicate their level of confidence using a 4-score ranking system (1: non

diagnostic; 2: low confidence; 3: moderately confident; 4: high confidence).

6.2.1.2 Cranial nerve imaging

Whole brain 3D images of a healthy volunteer were acquired at 3T using a 32-channel
head coil with a multiacquisition SSFP (or CISS, also known as FIESTA-C) pulse
sequence with the following parameters: TR/TE=5.5 ms/2.4 ms, flip angle=55", matrix:
288x288 (pixel spacing=0.63mm isotropic), slice thickness=1 mm, slice spacing=1 mm,

BW=46.9 kHz, NEX=1. A sample multiacquisition SSFP image is shown in Figure 6.2.

Raw k-space data were retrospectively under-sampled with under-sampling factors 2, 3,
4, and 5, for GRAPPA parallel imaging, Iterative stationary wavelet transform
thresholding (Table 6.1), and low-resolution reconstruction, obtaining a total of 12 whole
brain under-sampled datasets, which were then reconstructed by the corresponding

reconstruction technique.

The reconstructions were viewed and scored by three senior radiology residents. The
fully-sampled image was presented to each participant followed by the reconstructed

images presented at random orders. The participant was requested to score each
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reconstruction based on the diagnostic quality of the cranial nerves, with a 5-point
scoring system (1: not interpretable, 2: severely degraded, 3: moderately degraded, 4:
mildly degraded, 5: no significant artifacts).

Furthermore, in another set of experiments, the three reconstructions at each under-
sampling factor were presented to the participant side-by-side, with randomized orders,
and the participant was requested to rank them based on the diagnostic quality of the

cranial nerves (1 being the best and 3 the worst.)

Figure 6.2- Sample multiacquisition SSFP image (fully-sampled reconstruction).

6.2.1.3 Magnetic resonance angiography (MRA)

Whole brain 3D time of flight (TOF) MR angiogram of a healthy volunteer was acquired
at 3T using a 32-channel head coil with the following parameters: TR/TE=20 ms/2.6 m:s,
flip angle=15°, matrix=216x168 (pixel spacing=1.1mmx1.4mm), slice thickness=1.4 mm,

slice spacing= 1.4 mm, BW=10.3 kHz, NEX=1.

Similar to the FIESTA experiments, raw k-space data were retrospectively under-
sampled and reconstructed by parallel imaging, combined parallel imaging and

compressed sensing (Table 6.1), and the low-resolution reconstruction. The reconstructed
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images were scored and ranked similar to the FIESTA reconstructions, based on the

diagnostic quality of the vessels.

All the images were viewed by the participants on a commercial LCD display in a room
with normal lighting. While this inevitably imposes some limitations since the images are
usually viewed in a dark room in the radiology department, due to space constraints, we

were unable to perform the experiments in a dark room.

Multiple-coil iterative thresholding reconstruction algorithm

Inputs:
F,,;: Under-sampled k-space data (i = 1, ..., N;, where N, is the number of coils)
s;: Coil sensitivities
Ugr: Under-sampling operations selecting k-space data
Output:
F;: Reconstructed k-space data
Algorithm:
// Initialize to the minimum energy reconstruction
fori « 1: N, do
Fy < By,
end

//Reconstruct through iterative thresholding
while not converged do
//combine multiple channel data

N fi _ s2
fopt & Xisy Wi s—i‘//where fi=F 'F,and w; = ZI-V”L

//thresholding
[ < Tfope

//data consistency
fori < 1:N. do
Fy <« F(sif )
Fy < F; — UgFy + Fy
end
end

Table 6.1- Multiple-coil iterative thresholding reconstruction algorithm. Fand I' denote

the Fourier transform and wavelet thresholding operations, respectively.
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6.3 Results

6.3.1 Detection of white matter lesions

Figure 6.3 shows the pooled (i.e., cumulative) results of the lesion detection task for the
low-resolution and compressed sensing reconstructions. The low-resolution

reconstructions resulted in higher true positive and lower false negative fractions.
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Figure 6.3- Lesion detection performance (pooled) for the compressed sensing (CS) and

low-resolution (lowres) reconstructions.

Corresponding ROC curves were computed based on the confidence levels indicated by
the participants, following the methodology of Metz [16]. The ROC curves are shown in
Figure 6.4. The area under the ROC curves (AUC) and the average of normalized root
mean square errors (NRMSE) with respect to the fully-sampled reference images for
different under-sampling factors are shown in Table 6.2. The low-resolution

reconstructions generally resulted in higher lesion detection accuracy in term of the area
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under the ROC curves. However, in terms of the reconstruction errors, compressed

sensing reconstructions resulted in lower average NRMSE values.

The reconstruction errors with respect to the fully-sampled reference, measured in terms
of the normalized mean square error (NRMSE), are statistically compared in Table 6.3.
Compressed sensing reconstructions resulted in significantly lower error values than the

low-resolution reconstructions for under-sampling factors 1 to 4.

U.F. AUC NRMSE

lowres CS lowres CS
1 0.99 096 0 0
2 1.0 0.97 0.013 0.0082
3 0.96 0.97 0.024 0.012
4 0.81 0.77 0.033 0.023
5 0.78 0.67 0.042 0.038

Table 6.2- Area under ROC curves (AUC) and the average normalized mean square error
(NRMSE) for different under-sampling factors (UF) in the lesion detection task (pooled

results). Corresponding ROC curves are shown in Figure 6.4.

The area under the ROC curves (AUC) is compared against the average normalized root
mean square error (NRMSE) of the low-resolution and compressed sensing

reconstructions for each under-sampling factor in Figure 6.5.

While compressed sensing reconstructions resulted in significantly lower error values

than the corresponding low-resolution reconstructions (Table 6.3), no improvement in
lesion detection accuracy was observed with compressed sensing over the simple low-
resolution reconstructions. In fact, better detection performance was observed with a

simple low-resolution reconstruction.
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Figure 6.4- ROC curves corresponding to the lesion detection task (pooled results).

Two-sample t test (NRMSE s — NRMSE |, res)
U.F. Confidence Interval P-value

-4.5e-03 + 7.7e-04 4.9e-13

-9.8e-03 £ 5.0e-03 2.0e-04

Table 6.3- Statistical comparison of the low-resolution (lowres) and compressed sensing
(CS) reconstruction errors (NRMSE) in terms of the confidence intervals and the p-values

corresponding to a two-sample ¢ test, for different under-sampling factors.
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Figure 6.5- Area under ROC curves (AUC) versus average normalized root mean square
error for each under-sampling factor for the lesion detection task with compressed

sensing (CS) and low-resolution (lowres) reconstructions.

6.3.2 Cranial nerve imaging

The results of the cranial nerve imaging ranking task are shown in Table 6.4, and those of
the scoring task are shown in Table 6.5 and Figure 6.6. Except for the low under-
sampling factor of 2, combined compressed sensing and parallel imaging is generally
ranked the best reconstruction at each under-sampling factor. At under-sampling factor 2,
the GRAPPA and CS+PI reconstructions are very similar, as one of the participants
ranked them both 1. However, GRAPPA receives slightly better ranking and scoring.
Furthermore, while the subjective diagnostic quality score drops for the GRAPPA and
low-resolution reconstructions very rapidly with increasing under-sampling factor, the
combined CS+PI reconstruction maintains a reasonably high score up to under-sampling
factor 4, suggesting that diagnostic quality (i.e., a subjective score of 4 or higher) images
are achievable with under-sampling factors as high as 4 by combined compressed sensing
and parallel imaging. Also, it is interesting to observe that while for each reconstruction
the subjective quality score shows high correlation with the reconstruction error,
measured in terms of NRMSE, the correlation follows different trend for different

reconstructions.
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U.F. Participant# GRAPPA lowres CS+PI

1 1 3 2
2 2 1 3 1
3 1 3 2
1 2 3 1
3 2 2 3 1
3 1 3 2
1 2 3 1
4 2 1 3 1
3 2 3 1
1 2 3 1
5 2 2 3 1
3 3 2 1

Table 6.4- Results of the cranial nerve imaging ranking task for three participants.

6.3.3 Magnetic resonance angiography (MRA)

Table 6.6 shows the results of the MRA ranking task, with those of the scoring task
shown in Table 6.7 and Figure 6.8. Sample projection reconstructions at x5 under-
sampling are shown in Figure 6.7. The results generally conform to those of the cranial
nerve imaging experiments. However, the subjective scores drop more rapidly with

increasing under-sampling factor than those of the cranial nerve imaging experiments.

Also, the GRAPPA reconstructions show the most drastic decrease in the subjective score
(and increase in the NRMSE) with increasing under-sampling factor. (In terms of the
quantitative reconstruction errors, while the NRMSE values of the CS+PI and lowres
reconstructions remain within the same range as those of the cranial nerve imaging
experiments, GRAPPA results in a noticeable increase in the NRMSE at under-sampling
factors 3 and above.) At under-sampling factors 3 and above, GRAPPA performance falls
even below the low-resolution reconstruction both in terms of the subjective scores and
the NRMSE. In general, for cranial nerve imaging and MRA, while the GRAPPA
reconstruction is very effective (in terms of the resulting diagnostic performance) for very
low under-sampling factors (2), its limits are reached very fast by increasing the under-

sampling factor (3 and above).
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U.F. reconstruction Avg.score NRMSE

Grappa 4.3 0.013
3 Lowres 3.3 0.043
CS+PI 4.7 0.021

grappa 2 0.050
5 lowres 1 0.060
CS+PI 3.3 0.026

Table 6.5- Average scores given by three participants for the cranial nerve imaging

scoring task and the normalized root mean square error (NRMSE) of the corresponding

reconstructions.
6
y=-170x + 8.0
| ’\C\%\l {\
4 T
° QL\ \;\ # GRAPPA
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S
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Figure 6.6- Average score (given by three participants) versus the normalized root mean
square error (NRMSE) for the cranial nerve imaging scoring task. The error bars show

one standard deviation, if non-zero.
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U.F. Participant# GRAPPA lowres CS+PI

1 1 3 2
2 2 1 3 1
3 1 3 2
1 3 2 1
3 2 3 2 1
3 3 2 1
1 3 2 1
4 2 3 2 1
3 3 2 1
1 3 2 1
5 2 3 2 1
3 3 2 1

Table 6.6- Results of the MRA ranking task for three participants.

Although at higher under-sampling factors (3 and above) the subjective scores are
generally lower than those of the cranial nerve imaging experiments, the results still
suggest that higher under-sampling factors can be achieved by the combined CS+PI
reconstruction while maintaining diagnostic quality. (For example, in Table 6.7 CS+PI
receives an average score of 4 or higher for under-sampling factors up to 3, while other
reconstructions receive a subjective score of 3 or less at under-sampling factor 3 and
above.)

U.F. reconstruction Avg.score NRMSE

grappa 5 0.0082
2 lowres 4 0.029
CS+PI 4.7 0.014
grappa 1.7 0.11
3 lowres 3 0.037
CS+PI 4 0.025
grappa 1 0.14
4 lowres 2 0.045
CS+PI 3.3 0.027
grappa 1 0.15
5 lowres 2 0.051
CS+PI 3 0.030

Table 6.7- Average scores given by three participants for the MRA scoring task and the

normalized root mean square error (NRMSE) of the corresponding reconstructions.
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(c) lowres (D) GRAPPA

Figure 6.7- Maximum intensity projection- Axial view: (a) fully-sampled (b,c,d) 5x

under-sampled.
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Figure 6.8- Average score (given by three participants) versus the normalized root mean
square error (NRMSE) for the MRA scoring task. The error bars show one standard

deviation, if non-zero.

6.4 Discussion and conclusion

The results primarily suggest that the advantages of compressed sensing depend on the
application. For example, while the results suggest that higher under-sampling factors
while maintaining the diagnostic quality are reached with combined CS+PI for cranial
imaging and MRAs, as noted in the previous section, no improvement over a simple low-
resolution acquisition is achieved by compressed sensing in the lesion detection task,

involving identification of relatively large lesions.

Compressed sensing generally improves the resolution by interpolating the under-
sampled data based on an a priori sparsity reconstruction constraint. This, however,
sometimes results in visual reconstruction artifacts, i.e., the under-sampling aliasing
artifacts that are not completely removed during the reconstruction, in spite of the

increased resolution. This is illustrated in Figure 6.9 with a simple test image. As
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suggested by the lesion detection results, this task does not require high resolution
images, as lesions are usually large enough distinct areas to be detected on a simple low-
resolution reconstruction. However, the aliasing artifacts on the compressed sensing
reconstructions may interfere with the detection of the true lesions, resulting in overall
detection performance even worse than the simple low-resolution reconstruction, as
suggested by the results above. For example, as shown in Table 6.2, while compressed
sensing results in lower reconstruction error (NRMSE) than low-resolution, the lesion
detection performance in terms of the area under the ROC curve is generally better for

low-resolution compared to compressed sensing.

RESOLVING POWER TEST TARGET RESOLVING POWER TEST TARGET
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Figure 6.9- Compressed sensing (a) and low-resolution (b) reconstruction of a simple test
image by under-sampling in the frequency domain (under-sampling factor 5). While
compressed sensing results in higher resolution (finer lines are resolved in the left image)
it also results in some aliasing visual artifacts. The arrows point to examples of aliasing
artifacts on the compressed sensing reconstruction and loss of resolution in the lowres

reconstruction.
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It is known that compressed sensing performs very well with very sparse images, e.g.,
MRAs, which is consistent with our results. However, as noted in the previous section,
under-sampled MRA reconstructions generally received lower subjective scores than the
FIESTA cranial nerve images at the corresponding under-sampling factor. This can partly
be attributed to the fact that the FIESTA cranial nerve images are intrinsically very high
SNR images. Additionally the arteries in the MRA have more complex courses and are
scrutinized to a higher degree than cranial nerves by radiologists to look for more subtle

abnormalities in contour.

In summary, while for some applications, especially those requiring/relying on high
resolution, CS may be of advantage, for some others, e.g., certain lesion detection tasks,
one might simply reduce the acquisition time by reducing the resolution to a certain

amount without affecting the diagnostic performance.
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7 Summary and future directions

7.1 Thesis summary

The primary objective of this thesis was to study MRI acceleration techniques based on the
acquisition of under-sampled k-space data followed by interpolation of the missing samples.
Although with advancements in MRI hardware, e.g., new scanners with higher strength static
magnetic field and gradients, as well as advancements in pulse sequence design, e.g., echo train
imaging techniques [1]-[7], faster acquisitions have become possible, due to physical and
biological constraints the acquisition time is still relatively long for typical clinically used pulse
sequences [8]. Furthermore, while the acquisition time can be reduced by trading off the
resolution and/or signal-to-noise ratio (SNR) of the acquired images [9], practical limits are very
soon reached due to the minimum requirements on resolution and/or SNR in many applications.
On the other hand, patient comfort and cost considerations limit the acceptable clinical scan
times, which in turn limits the number of pulse sequences that can be run in a single clinical
examination. However, because of MR’s versatility in acquiring multiple tissue-related
parameters, e.g., T1 and T2, the patient is being subjected to increasing number of imaging
sequences. Therefore, reducing the acquisition time in magnetic resonance imaging, while
maintaining an acceptable image quality, i.e., resolution and SNR, remains a primary field of

research [8].

A major class of MRI acceleration techniques is based on the acquisition of under-sampled k-
space data (therefore, reducing the acquisition time) and interpolation of the missing samples to
generate a full-resolution image. Two major categories of under-sampled MRI reconstructions
are Compressed sensing [10], [11] and Parallel imaging [12]—[14]. The former involves
interpolation of under-sampled k-space data by assuming an a priori sparsity constraint on the
image, while in the latter interpolation is based on the knowledge of the coil sensitivities. When

multiple-channel data available, the best reconstruction performance is achieved by a combined
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compressed sensing and parallel imaging reconstruction [15], [16]. The main approaches taken in

this thesis to acceleration of MRI acquisitions fall under these two categories.
The specific objectives of this thesis can be summarized as follows:

1. Compressed sensing reconstruction by penalizing the stationary wavelet transform
coefficients: While the discrete wavelet transform is commonly used as the sparsifying
transform in compressed sensing, reconstruction is traditionally carried out by penalizing
the decimated wavelet transform coefficients (DWT) [10]. However, penalizing the
decimated wavelet transform coefficients often results in visual reconstruction artifacts,
which are mainly associated with the lack of translation-invariance of the wavelet basis in
the decimated form [17]. A major contribution of this thesis was to show that these
reconstruction artifacts can be eliminated or greatly reduced by penalizing the translation
invariant version of the discrete wavelet transform, i.e., penalizing the stationary wavelet
transform coefficients for Stationary wavelet transform sparse recovery. Additionally, a
practical Iterative stationary wavelet transform thresholding algorithm allowing for
simultaneous incorporation of coil sensitivity profiles for combined compressed sensing
and parallel imaging reconstruction was developed.

2. Joint under-sampled reconstruction of multiple-acquisition datasets: Some
applications of MRI, e.g., Quantitative MRI: T1/T2 mapping [18]-[22], involve multiple
sequential acquisitions that exhibit high correlation, or low joint entropy, since they are
often acquired by only changing an imaging parameter. In this thesis it was shown that
such correlation can be incorporated in Under-sampled MRI reconstruction problems to
improve the reconstruction quality, or increase the under-sampling factor while
maintaining the reconstruction quality.

3. Driven equilibrium single pulse observation of T1 with high-speed incorporation of
RF field inhomogeneities (DESPOT1-HIFI): While DESPOT1/DESPOT2 T;and
T,mapping techniques [23] provide efficient ways of computing T1/T2 maps [24], at
high (3T and above) magnetic some inaccuracies are observed due to the deviations of
the transmitted flip angle from the prescribed values. In order to address this problem, an

extension to the DESPOT known as DESPOT-HIFI [22] was proposed. Another
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contribution of this thesis was a modification to DESPOT-HIFI resulting in more
accurate computation of the quantitative T1 and T2 maps.

4. Subjective quality assessment of the under-sampled reconstructions: While
quantitative quality metrics, e.g., the normalized mean square error (NRMSE), have been
commonly used to evaluate and compare the quality of different under-sampled
reconstructions, it was shown in this thesis that such quantitative measures do not
necessarily correlate with the perceptual quality as perceived by radiologists (Chapter 5).
Therefore, any quantitative assessment of the reconstruction quality is of limited clinical
impact unless accompanied by subjective assessments directly related to the diagnostic
quality of the images. This problem was addressed in the thesis through a number of
subjective experiments, carried out with the help of collaborating radiologists, aimed at
subjective clinical evaluation of different under-sampled reconstructions for different

applications.

7.1.1 Stationary wavelet transform penalization

Traditionally wavelet-based compressed sensing reconstructions involve penalizing the

decimated wavelet transform (DWT) coefficients [10], [11], [25], [26]:

mings |[Ypwrfll, st WUrFf* = Ell, < € (7.1)

where Yy denotes the decimated wavelet transform (DWT) and F the Fourier transform. Uy is
the k-space under-sampling operation and F,, the originally acquired (under-sampled) k-space

data. The solution is denoted by f*.

Chapter 3 of this thesis demonstrated that some of the reconstruction artifacts, associated with
the lack translation of the wavelet basis in the decimated (DWT) form, can be eliminated or
reduced by penalizing the undecimated discrete wavelet transform, i.e., the stationary wavelet
transform (SWT), which provides a translation-invariant basis. That is,

mings |[Ygyrf |l st |URFf* — El,, < €, where g7 is now the stationary wavelet

transform (SWT).
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It was shown that SWT-penalized reconstructions result in fewer visual artifacts, as well as
significantly lower reconstruction error with respect to the fully-sampled reference compared to
the corresponding DWT-penalized reconstructions. Furthermore, SWT reconstructions generally
converged faster, i.e., in fewer iterations, than the corresponding DWT reconstructions.
Additionally, while DWT-penalized reconstructions often over-converged, in many cases no

over-convergence was observed with SWT.

These characteristics were demonstrated for compressed sensing reconstructions with different
additional constraints, including DWT/SWT-penalized reconstructions with additional total
variation (TV), and coil sensitivity, i.e., combined parallel imaging and compressed sensing
reconstruction. The latter is of particular practical interest since it is expected to achieve the best
reconstruction performance by combined parallel imaging and compressed sensing

reconstruction, when multiple-channel data available.

In Chapter 2 an Iterative stationary wavelet transform thresholding reconstruction algorithm was
presented. Iterative thresholding algorithms are commonly used to find a solution to the
aforementioned [;-regularized reconstruction problem (equation 7.1) [25], [27], [28]. While
traditionally thresholding is performed on the decimated wavelet transform (DWT) coefficients
corresponding to a DWT-penalized reconstruction, as shown in chapter 2, SWT-penalized
reconstruction can be achieved through iterative SWT thresholding. Furthermore, an extension of
the iterative thresholding reconstruction for simultaneous incorporation of multiple-coil data was

presented.

7.1.2 Joint under-sampled reconstruction of multiple-acquisition datasets

Some MR applications, e.g., Quantitative MRI: T1/T2 mapping [18]-[22], involve multiple
sequential acquisitions of an object. These images are often acquired by changing a single
imaging parameter. Consequently, while the intensity levels of these acquisitions are
manipulated, they exhibit high structural similarity, i.e., low joint entropy. In chapter 4, this
similarity was incorporated as an additional constraint in the under-sampled reconstruction
problem to improve reconstruction quality, or increase under-sampling while maintaining the

quality. To this end, a Similarity-promoting operation was developed, which was then
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incorporated in an Iterative stationary wavelet transform thresholding reconstruction algorithm,

in addition to the conventional thresholding, i.e., sparsity-promoting, operation.

While incoherent under-sampling is important for compressed sensing reconstruction of
individual images [10], in the joint reconstruction case, under-sampling incoherence between
different acquisitions becomes crucial in addition to the individual under-sampling incoherence.
While the latter is achieved by random under-sampling of each k-space dataset, the former is
achieved by making the individual under-sampling operations in different acquisitions

independent of each other.

Without loss of generality, the methods and results were demonstrated for the DESPOTI T1
mapping technique, in which the quantitative T1 map is computed from two spoiled gradient

recalled (SPGR) acquisitions at optimal flip angles [23].

Joint reconstructions resulted in significantly lower reconstruction error compared with the
traditional individual reconstructions as well as the low-resolution reconstructions, in terms of

both the reconstruction of individual SPGR images and the computed T1 map.

In addition to the reconstruction error in individual SPGR images, DESPOTT error also depends
on the correlation between the individual errors. For example, while the individual
reconstructions resulted in significantly lower reconstruction error of the individual SPGR
images than the low-resolution reconstructions, the error in the T1 map computed from the low-
resolution images was significantly lower than that computed from individual reconstructions.
This decrease in the DESPOTT1 error is mainly associated with the high correlation between the
errors in the low-resolution images- the main source of error in the low-resolution
reconstructions is the blurring due to the low-pass filtering of the images, which is the same for
both of the images. Nevertheless, random under-sampling in the compressed sensing
reconstructions results in less correlated errors of the individual reconstructions, which in turn
results in increased DESPOTT error. However, the joint reconstruction exhibited significantly

lower SPGR and DESPOT1 error compared to the individual and low-resolution reconstructions.
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7.1.3 Driven equilibrium single pulse observation of T1 with high-speed incorporation of
RF field inhomogeneities (DESPOT1-HIFI)

Driven equilibrium single pulse observation of T1/T2 (DESPOT1/DESPOT2 T;and T, mapping)
is currently the most efficient T1/T2 mapping technique. In DESPOT1 a T1 map is computed
from two spoiled gradient recalled (SPGR) acquisitions at optimal flip angles. Once the T1 map
is computed, it is used with DESPOT2 to compute the T1 map from steady state free precision
(SSFP) acquisitions [23]. However, deviations of the transmitted flip angle, ar, from the
prescribed value, ap, introduce inaccuracies in the computed T1 values due to inhomogeneities
of the RF (B,) field at high magnetic fields (3T and above). The transmitted flip angle is
generally related to the prescribed flip angle as a; = kap, where k is a parameter denoting the

spatial variations of the B field.

The Driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field
inhomogeneities (DESPOT1-HIFI) addresses this problem by an additional inversion recovery
spoiled gradient echo (IRSPGR) acquisition. The combined SPGR and IRSPGR data are then

used to simultaneously estimate k, My, and T;.

In chapter 5 a modification to DESPOT-HIFI was proposed resulting in more accurate estimation
of k, My, and T;. In particular, this modification involved rederivation of the IRSPGR signal
intensity equation used in DESPOT-HIFI. The proposed modification was validated on phantom

and iz vivo human brain data.

7.1.4 Subjective quality assessment of under-sampled reconstructions

Validation of results is an important aspect of the under-sampled reconstructions. While
quantitative quality metrics, such as the reconstruction error with respect to fully-sampled data,
are commonly used for the purpose of evaluation of the performance of under-sampled
reconstruction techniques, as well as their comparison, as shown in Chapter 5, such quantitative
measures do not always conform to subjective quality as perceived by radiologists and other
expert end users. Consequently, these quantitative evaluations/comparisons are of limited clinical

impact, unless accompanied by subjective results related to the clinical diagnosis.
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The problem of subjective quality assessment and comparison of under-sampled reconstructions
was addressed in Chapter 5, where we reported the results of the subjective experiments
performed with the assistance of collaborating radiologists in order to assess/compare the
performance of different under-sampled reconstruction techniques for different specific
applications. In particular, three common applications of MRI in neuroradiology were

considered:

1. Detection of white matter lesions: In this task the participant was asked to identify
white matter lesions on reconstructed FLAIR images. Artificial but realistic white matter
lesions were placed on FLAIR brain images of a healthy volunteer in random locations
with a probability of 50% to generate test images. These images were then under-sampled
in the frequency domain at a range of under-sampling factors from 1, i.e., no under-
sampling, to 5, for compressed sensing and low-resolution reconstructions. The quality of
the reconstructions was evaluated based on the lesion detection performance achieved by
the participants for each reconstruction and different under-sampling factors. The results
generally suggested no improvement in the lesion detection performance achieved by
compressed sensing over a simple low-resolution reconstruction.

2. Cranial nerve imaging: In this task the participants were asked score under-sampled
reconstructed multiacquisition SSFP (or CISS, also known as FIESTA-C) images based
on the diagnostic quality of the cranial nerves. The dataset consisted of low-resolution,
GRAPPA, and combined compressed sensing and parallel imaging (reconstruction
through the multiple-coil iterative stationary wavelet transform thresholding algorithm
presented in Chapter 2), each at under-sampling factors 2, 3, 4, and 5. The
reconstructions were also ranked by the participants at each under-sampling factor. The
results generally suggested that combined compressed sensing and parallel imaging
reconstructions receive the highest scores/ranks.

3. Magnetic resonance angiography (MRA): This task involved presenting the
participants with time of flight (TOF) MRA images along with the corresponding
projection reconstructions, based on which different reconstructions at different under-
sampling factors were subjectively scored and ranked. Similar to the previous task, low-

resolution, GRAPPA, and combined compressed sensing and parallel imaging
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reconstructions were evaluated at under-sampling factors 2, 3, 4, and 5. Similar to cranial
nerve imaging, the results generally suggested that combined compressed sensing and

parallel imaging reconstructions receive the highest scores/ranks.

Performance of the compressed sensing reconstructions depends on the clinical application.
In particular, compressed sensing reconstructions lead to improved diagnostic performance in
applications involving fine features requiring high resolution, e.g., the cranial nerve imaging
and MRA tasks described above. Nevertheless, it is also known that while improving the
resolution, compressed sensing often results in visual reconstruction artifacts. Consequently,
for applications such as the lesion detection task described above, which do not require high
resolution, one may simply reduce the acquisition time by appropriately reducing the

resolution.

7.2 Future work
7.2.1 Computation time

As emphasized throughout this thesis, one of the main motivations behind accelerated
acquisitions is either to allow more data to be acquired in a single imaging session or to reduce
motion artifacts. However, if the reconstruction is not performed in real-time it is impossible to
know if the data need to be reacquired until after the patient is out of the scanner. Therefore,
while theoretically the reconstruction can be performed off-line, in practice an accelerated

acquisition will be of limited use if it cannot be reconstructed in real-time.

As noted, the execution time of the MATLAB implementation of the iterative-thresholding-
based reconstructions presented in this thesis is in the order of a few seconds for a 256x256
matrix. Although this can be considered close to real-time the execution time can potentially be
greatly reduced by more efficient and/or multi-thread GPU-based implementations of the
algorithms. Nevertheless, as noted, the execution time is far less than that of the similar
MATLAB implementation of other state-of-the-art reconstruction algorithms producing
comparable results, with execution times in the order of thousands of seconds for a similar image
(see, for example, section 3.4). The interested reader is referred to [29], in which a GPU-based

implementation of under-sampled MRI reconstruction has recently been developed.
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7.2.2 Other clinical applications

Although the methods and results in this thesis were primarily presented for magnetic resonance
brain imaging, they are directly applicable to other clinical applications. Figure 7.1 shows an
example of under-sampled reconstruction of SPGR foot images at x3 under-sampling. As this
figure clearly shows, higher resolution is achieved by combined compressed sensing and parallel
imaging reconstruction through the multiple-coil iterative SWT thresholding algorithm presented

in section 2.2.1, compared with a simple low-resolution reconstruction.

As noted previously, subjective clinical assessment of the under-sampled reconstruction methods
is essential for the translation of these techniques to real clinical applications. Also, as discussed
previously, the performance of the reconstruction techniques to a great extent depends on the
underlying clinical application. Obviously, each new application calls for a new set of

experiments aimed at subjective quality assessment of the reconstruction techniques.

(a) Fully-sampled (b) Multiple-coil iterative (c) Low-resolution
SWT thresholding

Figure 7.1- Reconstruction of 8-channel spoiled gradient recalled foot images at x3 under-
sampling.
7.2.3 Cardiac Cine MRI

Chapter 4 of this thesis presented the idea of exploiting the correlation between multiple
successive acquisitions as an additional reconstruction constraint. Cardiac cine MRI is another

major category of MR imaging techniques that can particularly benefit from the correlation
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between successive acquisitions. While several approaches to incorporating the correlation
between successive acquisitions in cardiac cine MRI have been proposed by different authors

(see [30] and references therein), this area still remains an active field of research.
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Appendix A: Erroneous DESPOT-HIFI equation

It was noted in chapter 5 that although DESPOT-HIFI is based on an additional IR-SPGR
acquisition, in which the inversion pulse is followed by a train of spoiled gradient echo pulses,
the IR-SPGR signal equation used in the original DESPOT-HIFI paper [1] is that of an
inversion-recovery spin echo (IR-SE) sequence, which results in inaccuracies in the computed

T1 values. The nature of the erroneous assumption is outlined below:

An IR-SE sequence involves successive applications of a 180°-pulse, i.e., the inversion pulse,
followed by a 90°-pulse, i.e., the RF refocusing pulse. The time between two successive
inversion pulses is referred to as the repetition time (TR) and the time between the 180°

inversion pulse and the 90° refocusing pulse is referred to as the inversion time (TI).

At time t = 07, immediately prior to the application of the inversion pulse, the magnetization

vector is equal to the equilibrium magnetization, M:

M,(07) = M, (1)
Assuming the inversion pulse is applied at t = 0:

M,(0™) = —M, 2)

Therefore, at t = T1™, right before the application of the 90° RF refocusing pulse (see
section 1.2.4):

M,(TI™) = My(1 — 2¢7T) 3)

The 90° RF refocusing pulse flips the longitudinal magnetization vector onto the transverse

plane. Therefore, after the application of the 90° pulse:

M, (TI*) =0 4)
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The longitudinal magnetization recovers towards M, until time t = Tr~, just prior to the

application of the next inversion pulse:
—(Tr-TID)
M,(Tr™) = M, (1 —e T1 ) (5)

Since M, recovers from zero after the 90° pulse at each cycle, M,(Tr ™) is the same at the end of

=(Tr=TI)

each cycle. Therefore, for each cycle but the very first one, M,(07) = M, (1 —e T1 ), based

on which M, (TI™) is derived:
M, (TI7) = —M, (1 _2¢ iy e_Tr/Tl) (6),

which is the assumed IR-SPGR signal intensity equation in the original DESPOT-HIFI paper.
The main discrepancy is the assumption of the 90° RF refocusing pulse, which is crucial in the
above derivation. However, the IR-SPGR sequence involves a 180° inversion followed by

gradient echoes, i.e., SPGR, acquisitions, which do not involve RF refocusing.

Reference

[1] S. C. L. Deoni, “High-resolution T1 mapping of the brain at 3T with driven equilibrium single
pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-
HIF1),” J. Magn. Reson. Imaging JMRI, vol. 26, no. 4, pp. 1106—-1111, Oct. 2007.
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SECTION 1 PROJECT REGISTRATION

112 | Project Title

= Structural and Functional MR imaging in Frontal and Temporal Lobe Epilepsy at 1.5T,
3T,and 7T

1.1b [ Sponsor or Agency Reference Number or Identifier if known.

= N/A
12 Is this a US Food and Drug Administration (FDA) monitored study andior a study YES
funded or supported by a US government agency? NO v

13 When will recruitment of research participants stat? Start Date | June 1st
2009

When will all contact and fallow up with study subjects andfor data callection be concluded? End Date | July 31st
2015

14 Principal or Lead Investigator at this site.

(PI'must be a faculty or staff member at UWO or affiliated institutions. Supervisor for student or
resident projects must be a faculty or clinical advisor.)

Mame | Terence M. Peters

Title & Position | Professor, Medical Imaging and Medical Biophysics, University of Western Onfario

Degrees | PhD

Departmental Affiliafion | Robarts Research Insfitute - Imaging Research Laboratories

Building & Street | Robarts Research Insfitute - Imaging Research Laboratories
Address | P.O. Box 5015, 100 Perth Drive,

Mailing
Address

City, Province | London, ON

Postal Code | NGA SKB

Telephone | I | Fax|

Email (required) | R
For security purposes please provide your hospital,
institute ar UWO email addrecs whenever possible.

15
Date:

Signature of Local Principal Investigator attesting that:
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a)

all co-investigators have reviewed the protocol contents and are in agreement with the protocol as
submitted;

b) allinvestigators have read the Tri-Council Policy Statement: Ethical Conduct in Research Involving Humans
and the UWO Guidelines on Health Sciences Research Involving Human Subjects and agree to abide by
the guidelines therein;

c) the investigator(s) will adhere to the Protocol and Consent Form as approved by the HSREB;

d) the Principal Investigator will notify the HSREB of any changes or adverse eventsl/experiences in a timely
manner;

e} the study will not start unfil the contract/ agreement has been approved by the appropriate university,
hospital or research insfitute official;

f) if the study is funded by Indusfry the investigators will adhere to the conditions described in Section 3.2: and

g} if external regulatory approval is required, the investigators will not start the study until all approvals are in
place.

16 List all local co-investigators and collaborators. Include research personnel only if they have a

significant role in the conduct of the study. Expand chart as required.
Name Title/Position Degrees Role

Donald H. Les Professor, Medical MB, Bch, FRCPC Radiologist

Imaging, UWO
Seyed M Mirsattari Assistant Professor in the | MD, FRCPC - Recruiting patients.
Department of Clinical - Perform neurological
Neurological Sciences. examination
University of Western - Interpret EEG and
Ontario. clinical data from the
patient’s chart.
- Urgent neurological
assessment when
patients are in the MR
scanners.
Frank Bihan Electrophysiology BSc Data analyst
Technologist. Department
of Clinical Neurological
Sciences, UWO.
Andrew Parrent MNeurosurgeon, LHSG; MD, FRGSC Will perform some of the
Associate Professor, neurosurgenes and
UWo provide consultation.
Robert Hammond Neuropathologist, MD, FRCPC Provide pathology
Professor, Pathology, consultation.
UWo

Zhongjun Hou Radiologist, LHSC MD Image Analysis

Diego Cantor-Rivera Graduate Student UWO | MSC (PhD Candidate) Image Analysis

Cyndi Harper-Litde MRI Technologist Will perform the MRI

Scans
Kevin Wang Graduate Student UWO | MESc (PhD Candidate) Data Collection and
Image Analysis
David Steven Neurosurgeon LHSG; MD, FRGSC Will perform some of the
Associate Prof. UWO neurosurgenes and
provide consultation.
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Sandrine de Ribaupierre | Neurosurgeon LHSC; MD, FRGSC Will perform some of the
Assistant Prof. UNO neurosurgenes and
provide consultation.
Jorge Burnzo MNeurosurgeon LHSC; MD, FRGSC - Recruiting patients.
Assistant Prof. UNO - Perform neurological
examination
- Interpret EEG and
clinical data from the
patient’s chart.
- Urgent neurological
assessment when
patients are in the MR
scanners.
Mohammad Kayvanrad Graduate Student UWO | MSc Graduate Student Data Collection and
Image Analysis
Robert Mayer LHSC Clinical trials BA HR Dip Management of patient
Coordinator scanning at Robarts
17a Is this & multi-centred study? YES
NO v

1.7b [f YES, whao is the Principal Investigator or Project Leader for the entire study? Provide name and
complete contact information.

=]

1.7c [f YES, if the study is administered by a Coordinating or Contract Research Organization (CRO)}
provide the name and contact information.

1.8a To whom should REB notices and correspondence regarding this protocol be =]

sent — the Pl or an Administrative Contact? Note that this must be a local (default option) | *

person within the institution.  The Local Principal Investigator is wiimately
responsible for all aspects of the project and is required to sign-off on all

reguests for changes and modifications fo the profocol In some instances )

the REB may override the naming of an administrative contact but wil notify | Admin Gontact
the Principal Investigator of this determination and that materials will be sent

directly to himMher instead

1.8b If Administrafive Contact selected provide name and contact information below.

Contact Name

Title & Position

Department

Building & Street Address

City, Province

Postal Code

Telephone [ Fax|

Email (required)

For security purposes please provide your hospital,

inctitute or UWO email address whenever passible.
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19a | What is the stafus of the funding or support for this Funding not required
project? The HSRER strongly recommends waiiing to apply for Application Pending
ethics approval unil afer a project submitied for funding has Funded v
received nolification that the funding has been approved. It is very - —
wastein of the researcher's and the REB's time io preparaieview a I_n Kind mntnbutlun_only
protoco! that may nol proceed or may requie signifcant revision ang | describe (e.g. drugs, devices)
resreview as a resull of receiving less fuinding than anticipated
If Application Pending; Funded; or In-Kind Coniribufion fill in chart below.
19b | Name of funding agency(s) or sponsor(s) CIHR grant: Image-guided Surgery for Epilepsy
In the case of grant funding also provide the grant | Pl: Terry Peters  MOP # 89844
or proposal number if known.
19¢c | Name of investigator receiving/applying for funding | Terence Peters
1.10a | Will the research utilize patients o ) I
(or their records), resources or MNOME of the following sites are involved with this research
staff at any of these sites andior (check all that apply)
is the researcher associated LHSC = Victoria Hﬂ@pi‘tﬂl _YES
with one of these sites? LHSC — University Hospital - YES 7
. LHSC - South Street Hospital - YES
IfYES to Ll te that .
the mg%::r:f E:si;:;;DBhim wil LHSC - London Regional Cancer Program - YES
routinely share information as to the Children's Hospital of Western Ontario - YES
ethics approval status and other UWO Fowler Kennedy Clinic - YES
ethics-relaled or conduct of research St Joseph's Health Care London - YES
issues of thiz submission with the -
LHRI Grants & Contracts Office. Parkwood Hospital - YES
I ] . o Regional Mental Health Care {London ) - YES
n some instances it may be necessary Regional Mental Health Care (St. Thomas) - YES
1o 2teo nform the LASCISIAC Prvacy Byron Family Medical Centre - YES
’ Victoria Family Medical Centre - YES
5t. Joseph's Family Medical Centre - YES
1.11a | Does this project require Health Canada approval? NO| +
YES — Drug Clinical Trial
YES — Natural Product
YES — Medical Device
1.11b | FYES, what is the status of Approval received

that application? You will be
required fo provide a copy of
the “Letter of No Objection” or
a comparable document to the
Office of Research Ethics
before you may start the

research.

(attach a copy of No Objection letter or comparable document)

Submitted to Health Canada but not yet approved

Mot yet submitted — sole Canadian site therefore require UWO
HSREB approval pricr to submission to Health Canada

Not yet submitted by sponsor or other Canadian site
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1.12a | Clinical Trial Registration NOT APPLICABLE - not a v
Has this clinical trial been (or will it be) registered with a Clinical Tnal

regisiry that mests the ICMJE standards?
What is a clinical trial?

A clinical trial is a research study designed to test the safety
and/or effectiveness of drugs, devices, freatments, or YES — Has been reqisterad
preventive measures in humans. reg

The HSREE strongly supports the recommendations of the
International Committee of Medical Journal Editors (ICMJE)
regarding the requirement for registration of all clinical trials on a YES — Will be registered
publicly accessible and recognized registry. Check the following
website for some FAQ's regarding registration:

hitp:/iwww. Inrionhealth.cail HRI'opportunities/clinical trials.html

NO - Will not be registered

1.12b

If NO, indicate why inclusion in a registry is not possible or desirable. If the reason is not sufficient the
HSREB may decide that the following statement must be in the Informed Consent decumentation.
“This clinical trial will not be registered with a recognized, publicly-accessible clinical trial registry and
therefore it is unlikely the study results will be published by established medical journals.”

=

1.13a | Dissemination of Clinical Trial Results NOT APPLICABLE
Is there an intention to make the results of Not a Clinical Tral | +
this clinical trial publicly available through one NOT APPLICABLE
or some of the following methods (select all Preliminary or Feasibility Study
that apply). NO public release of study results planned
The HSREE feels that every effort shouldbe | YES - peer reviewed journal publication andfor
made to make clinical trial results public. presentafion at conference or scientific mesting
The HSREB recognizes that not all — -
submissions get accepted for publication or YES - clinical rial regisiry
presentation. YES - other (describe)

113b | If NO, indicate why public dissemination of study resulls is not possible or desirable.
Note that reasons based solely on the need fo protect proprietal information are not sufficient
justification. If the reason is not sufficient the HSREB may decide that the following statement must be
in the Informed Consent documentation.
“There are no intentions to make the results of this study publicly available. You should know that
when the presence or outcomes of selected trials are not made public, these studies cannot influence
the thinking of patients, clinicians, other researchers and experts who write practice guidelines or
decide on insurance-coverage paolicy.”

=

SECTION 2 CONFICT OF INTEREST
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21

Conflict of Interest - General

This section to be completed for all submissions not just those funded by industry. Note also that this
declaration applies to all co-investigators as well as the Principal Investigator.

21a

Do any of the investigators or their immediate families have any proprietary interests in YES

the product under study or the cutcome of the research including patents, trademarks,
copynghts and licensing agreements? NO | ~

2.2

Contlict of Interest - Industry Sponsored Protocols Only NoT| ¥
Mote also that this declaration applies to all co-investigators as well as the APPLICABLE

Principal Investigator.
YES | NO

223

Are any of the investigators or their immediate families receiving any personal
remunerafion (including investigator payments and recruitment incentives) from industry
sponsors for taking part in this investigation?

2.2b

Is there any compensation for this study that is affected by the study outcome?

22

Do any of the investigators or their immediate families have equity interest in the
sponsoring company? (this does not include Mutual Funds)

2.2d

Do any of the investigators or their immediate families receive payments of other soris
from this sponsor (e.g. grants, compensation in the form of equipment or supplies,
retainers for ongoing consultation and honorana)?

22

Are any of the investigators or their immediate families members of the sponsor's Board
of Directors (or comparable body)?

23

If YES to any of the above in 2.1 or 2.2 please describe the arrangement, including the monetary value
of any consulfing or share holdings, and discuss the implications of a potential conflict of interest. If
the conflict of interest cannot be eliminated, what the conflict is and how that conflict is being managed
should be discussed below and disclosed in the Letter of Information. The discussion and disclosure
should explain what addifional protections have been put in place to protect the study subject.

SECTION 3 INDUSTRY FUNDED PROTOCOLS ONLY

3.1 REB Administration Fee
The University requires an administration fee for industry funded protocols submitted for ethical review.
Please select biling option &) or B).
Note: It is ultimately the responsibility of the local investigator to ensure the fee is paid. In the event the Office of
Research Ethics is not able to recover the fee in a timely manner from the party named below, an invoice will be
sent ta the Local Pancipal lnvestigator for payment. Failure on the part of the Sponsar or the Investigatar ta pay
the fee in a timely manner may result in the withholding or withdrawal of ethics approval until such time as the
matter is resofved.
A) | The funds for this study will be administered by Lawson Health Research YES
Institute (LHRI) The tee will be paid from a LHRI research account. NO
If NO, pleass provide complete billing information below in part *B°
B) | The funds for this study will not be administered by LHRI. Send invoice to:

BILLING INFORMATION - COMPLETE ALL SECTIONS

Company or Institution

Contact Person

otreet Address
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City Province | State
Country Postal Code
Telephong Number Fax
CONTRACT &/OR PROTOCOL REFERENCE NUMBER REQUIRED

To ensure the sponsor is able to match the invoice for the ethics
administration fee with the contract you must provide the confract
andfor protocol reference number.

If you feel that due to extenuating circumstances the REB fee should be waived or adjusted, provide a brief written

explanation to the Office of Research Ethics prior to the submission of this protecol. Include the following:

+ Indicate how the funding will be used (budget)

«  [dentify who will own the data or any intellectual property arising from the agreement

+ Indicate if there are any restricions (e.g. publication delays) imposed upon the investigator by the sponsor and if 5o,
what they are.

Do not assume that prior waivers or discounts will also apply to this submission. (Email tetchB@uwo.ca or write to Office

of Research Ethics Room 4180 Support Services Building UWO)

32 | Conditions for Industry Funded Research

Investigators are reminded of the following requirements :

= all agreements and contracts must be approved by the appropriate research administration office for their institution
prior to starting the study (2.g. LHRI Clinical Research Office of Grants and Contracts; UWO Offices of Research
Development Services or Industry Liaison etc.);

*  confracts and agreements must not put undue limitaions on an investigator's right to publish;

*  confracts and agreements must not prohibit a study investigator from informing research participants of any risks that
may arise during a study;

*  jnvestigators and their staff are not permitted fo accept finders fees’ for subject recruitment, nor accept compensation
for services rendered that is significantly greater than their normal wages or fees for time spent; and,

= research related expenses should be covered by the project Sponsor or other research funds not by OHIP, the
participant’s health insurance or the institution’s operating budget.

SECTION 4 PROJECT DESCRIPTION

Complete each section under the appropriate heading. Be succinct and adhere to the page limitations. DO
NOT DIRECT THE COMMITTEE TO "SEE ATTACHED". DO NOT USE TEXT COPIED FROM FUNDING
APPLICATIONS OR STUDY PROTOCOLS UNLESS IT PROVIDES A SUCCINCT SUMMARY OF THE
METHODOLOGY APPROPRIATE FOR ETHICAL REVIEW AND DEALS WITH ETHICAL ISSUES. Copies of
detailed proposals submitted o a funding agency (eg. CIHR, Heart & Siroke) will not be reviewed as the ethical
Issues are not often adequately addressed in such documents and they frequently do not provide a succinct
summary as noted above. Your protocol will be RETURNED UNREVIEWED if the project description
information is incomplete, illegible or improperly filled out Please adhere to the page limitations.
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41a Provide a brief one or two sentence overview of the proposed research describing the population,
intervention and outcome. e.g. Palients with stage 4 colon cancer will be randomized to treatment A or
treatment B to assess survival. Healthy volunteers will have a 4.0 Tesla head MR! with a new coil to
assess picture quality (pilot)

= A group of 100 patients with frontal or temporal lobe epilepsy who are scheduled for
frontal or temporal lobectomy, and another group of healthy volunteers will undergo high
resolution magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS),
and diffusion tensor imaging (DT1) on 1.5, 3, and 7 Tesla MR scanners to localize the site of
the seizure focus in the patient group, in which the imaging findings will be correlated with
clinical and EEG data. After surgery, the excised temporal lobe tissue from 50 patients will
be imaged in the 94T MRI scanner at Robarts Research Institute.

41b | Provide KEYWORDS about | Frontal Lobe Epilepsy; 7T MRI; 3T MRI; Seizure Focus
the research. (Max 5)

4323 Is this a sequel to previously approved research? YES v
NO

4.2b If YES, indicate the previous ethics review number(s):

=

REB # 11155

4.2c | If YES, describe differences from the previously approved protocol(s):

=

MRI scanning at 7 Tesla in addition to previously approved scanning at 3Tesla. Also, the
excised brain tissue will be scanned at 9 4Tesla in addition to 3 Tesla.

43 Background & Justification — Briefly summarize knowledge base and past human andlor animal
research which has led to this project. When describing previous human studies or frials indicate the
number of participants. (1 page maximum- adhere to page limitations )

=

Epilepsy is a chronic neurological disorder with repeated unprovoked seizures that affect
up to 1% of the general population with a large economic and social burden to society.
More than 30% of patients with epilepsy have inadequate control of seizures with drug
therapy and are considered to have intractable epilepsy (1). Frontal lobe epilepsy accounts
for 20-30% of operative procedures involving intractable epilepsy. Anatomic localization of
the site of seizures focus is crucial in the evaluation and management of epilepsy patients.
Lesional frontal epilepsy has been associated with a better surgical outcome than non-
lesional epilepsy. Prognosis is best if the epileptogenic lesion can be surgically removed
completely (2).

While anatomic magnetic resonance imaging is reasonably good for detecting temporal
lobe epilepsy, it is not as good for detecting abnormalities in seizures originating from the
frontal lobes in the absence of structural abnormalities such as tumours (3, 4). High
resolution imaging using local surface coils was found to be effective in demonstrating the
normal grey-white matter junction, and due to its 3-dimensional acquisition, images can be
reformatted into coronal, sagittal, and surface-rendered views. These have been shown to
be effective in demonstrating cortical dysplasia, a potential occult epileptogenic focus (3).

Unlike conventional MRI, which provides structural information based on signals from
water protons, proton magnetic resonance spectroscopy (MRS) provides information about

Page | 147

www.manharaa.com



FORM =Foox WO HEREB FULL BOARD SUBMISSION (December 2008) CONFIDENTIAL PAGE @

the chemical composition of the brain. The MRS spectrum of the brain is characterized by
three major peaks: N-acetylaspartate (MAA), a neuronal marker, creatine (Cr) and choline
(Cho).The most common application of MRS in epilepsy has been the non-invasive
lateralization of the epileptic focus. MRS reveals abnormally low resonance intensities of
MAA/Cr within the temporal lobes of temporal lobe epilepsy patients (8). Functional MRI
(MMRI}) and MR spectroscopy (MRS) have matured in recent studies to suggest that they
increase the sensitivity and specificity in localizing the seizure focus in frontal lobe epilepsy
(7).

Diffusion Tensor Imaging (DTI) is a new acquisition MRI technique that can used to
demonstrate fibre tracts within the brain (white matter). DTI can identify the motion of water
molecules in the brain and it has been recently added to the armamentarium of methods for
investigating the cause and consequences of epilepsy. DT has shown to identify
abnormalities that can not be detected on conventional MRI. Serial DTI scans could also
have the potential to detect subtle changes secondary to seizures. However, the degree of
reliability and the reproducibility of DTI data remain to be determined (9).

The standard care for patients with frontal lobe epilepsy involves MR imaging in a
clinical 1.5T MR scanner. The great appeal of 3T and 7T MRI is the improvement in image
quality, contrast, and resolution. Because the signal-to-noise ratio (SNR) correlates in
approximately linear fashion with field strength, 3T imaging is roughly twice as great as at
1.5 T, and 7T is almost 5 times greater. The time necessary to acquire satisfactory images
using 3T and 7T can be substantially reduced, which has the added advantage of
minimizing motion artefacts. More and thinner slices can also be obtained at 3T and 7T in
the same scan time required at 1.5T, and functional MRI and MRS benefit significantly from
being performed at 3T and 7T. Images of the brain acquired at 3T have been rated as
significantly superior in lesion conspicuity and diagnostic value (10, 11), and we expect 7T
images to be even more so.

44 Study Design: Indicate which of the following best describes the type of investgation proposed.
[select all that apply)

Clinical Tnial Pilot Study

Drug or Natural Product Study (Phase 1) Qualitative Study

Drug or Matural Product Study (Phase Il Epidemiological Study

Drug or Natural Product Study (Phase |11} Device Assessment/Development

Drug or Natural Product Study (Phase IV) Open-Label Extension Study
Placebo Confrol Other-Specify v

Randomized Academic Research Study

45 Objectives and Hypotheses: Provide a clear statement of the purpose and objecfives of the
project. (i.e. Why are you doing the study? ) State hypotheses andlor research question(s).

(1 page maximum — adhere to page limitations)

—> The research proposal will focus on the structural localization and functional changes in
frontal and temporal lobe epilepsy. High-resolution MR imaging will be utilized to try to
demonstrate areas of brain abnormalities at 1.5, 3 and 7T scanners using the appropriate
MRI coils, including local surface coils and MR techniques, including Diffusion Tensor
Imaging (DTI). The data from the patients and the healthy volunteers will form a elinical
database, which will help neurosurgeons and neurologists to plan the most effective
surgical interventions in the future.
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Hypothesis:
Combined functional and high resolution anatomic MRI can depict the site of seizures focus
with greater than 90% sensitivity and 90% specificity.

46 Methodology - Describe the study design and what will be done to the parficipants at each stage
of the research. Investigators are encouraged to use flow charts or diagrams in their descriptions
For clinical trials (if applicable) include a description of “stopping rules” or “discontinuation
criteria”. (2 page maximum — adhere to page limitations)

=

Imaging methods:

One hundred patients with frontal or temporal lobe epilepsy will be recruited into the
experimental arm of the study over a five-year period, and 100 healthy volunteers into the
Control Group. All patients will be subjected to the routine MR examination scheduled for
epileptic patients in LHSC on a 1.5 T MR scanner. The routine MRI protocol includes the
following sequences: multi-planar spin echo images (SE), fluid attenuation inversion
recovery (FLAIR), diffusion tensor images (DTI), functional MRI (fMRI) and MRS.

Similar imaging technigues will be performed on high-resolution MR scanners at 3T
and 7T recently installed at the Imaging Laboratory of Robarts Research Institute, to
demonstrate areas of cortical dysplasia or other abnormalities in the frontal or temporal
lobes in patients in whom conventional anatomic MR is negative or inconclusive.

During the scanning, the patient will be monitored for seizure activity. If a convulsive
seizure or prolonged non-convulsive seizure occurs during the scanning, the study will be
terminated and the patient will receive immediate on-site medical attention by the study
epileptologist (SMM). The imaging findings will be correlated with clinical and EEG data.

We are seeking permission from the Tissue Use Committee to scan the resected
brain tissue in the 9.4T MR Scanner immediately following surgery, and just prior to clinical
pathological and histological analysis. A well established scanning sequence that allows for
extremely high resolution image data will be used to scan the resected brain tissue, which
will then be compared to the clinical pathology results. This will allow a better
understanding of the anatomical and structural organization of the brain, a more precise
localization of the seizure focus, and more detailed identification of certain cortical regions
and associated functional pathways. We will correlate histological findings from excised
tissue with high-resolution in vivo and ex vivo imaging of the affected brain tissue. This
research is intended ultimately to eliminate the need for invasive and traumatic procedures,
such as the Wada Test (that anesthetizes a hemisphere) and the application of cortical and
deep brain EEG electrodes commonly employed to lateralize epileptogenic activity and
identify seizure foci.

47 Scienfific validity of the study design: Address the strengths and weaknesses of the selected
design. Specifically indicate why a particular design was selected.
(1 page maximum — adhere {o page limitations)

=
We use a standard MRI protocol for epilepsy that employs data analysis comparable to
published work in this area. In addition, high-resolution imaging is expected to demonstrate
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areas of cortical dysplasia or other abnormalities in the frontal lobes in patients in whom
conventional anatomic MR (using the standard head coil} is negative or inconclusive.

We expect Diffusion Tensor Imaging (DTI) to show fibre tract derangements in
frontal lobe epilepsy that are not visible on anatomic MR images. This will be especially
important in patients with cortical dysplasia, where tracts can be disrupted when studied
pathologically. The 3 and 7T MR scanners, with their improved signal levels are expected
to improve spatial and temporal resolution of anatomical and functional studies.

This study will build on the strength of the world-renowned epilepsy program
currently in place at LHSC, based on patients from a busy epilepsy unit, which is the largest
in Canada. The research fits well with the fMRI program currently in place, and uses
expertise, equipment, and facilities currently present in the Robarts Research Institute. If
certain sequences prove to be more helpful in localizing the side of abnormality in frontal
epilepsy based on this research, these will be incorporated into the routine imaging of
patients with epilepsy. Lastly, this research offers an opportunity to develop new imaging
sequences (DTI) for evaluation of epilepsy, which may be carried over to other Neurologic
problems e._g. Alzheimer disease. It will also provide the first neurological images obtained
with a 7T MRI in Canada.

48 References — If possible please resfrict the list to ten (10) of the most relevant references.
References must be properly cited and contain the author, title of article, joumal and page
number(s).

=

1. Wiebe 3, Blume WT, Grivin JP, et al. A randomized controlled trial of surgery for
temporal —lobe epilepsy. N Engl J Med 2001; 345:311-8.

2. Sheryl Haut. hitp-//wwww emedicine.com/NEURO/Mopici41.htm. Last updated on March
2002.

3. So EL. Role of neurcimaging in the management of seizure disorders. Mayo Clin Proc
2002; 77: 1251-1264.

4. Lee DH, Gao F-Q, Rogers JM et al. MR in temporal lobe epilepsy: analysis with
pathologic confirmation. Am J Neuroradiol 1998; 19:19-27.

5. Bernasconi A, Antel SB, Collinis DL, et al. Texture analysis and morphological
processing of magnetic resonance imaging assist detection of focal cortical dysplasia in
extra-temporal epilepsy. Ann Neurol 2001; 49:770-775.

6. Cendes F, Caramanos Z, Andermann F et al. Proton magnetic resonance spectroscopic
imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe
epilepsy: a series of 100 patients. Ann Neurol 1997; 42:737-746.

7. Namer IJ, Bole NR, Sellal F et al. Combined measurements of hippocampal N-acetyl
aspartate and T2 relaxation time in the evaluation of mesial temporal epilepsy: correlation
with clinical severity and memory performance. Epilepsia 1999; 40: 1424-1432.

8. Rugg-Gunn FJ, Eriksson SH, Symms MR et al. Diffusion tensor imaging in refractory
epilepsy. Lancet 2002; 359(9319):1748-1751.

9.Thulborn KR, Davis D. Clinical MRI at 3.0 Tesla: performance and safety. Proc Int Soc
Magn Reson Med. 1999; 7: 828.

10. Price SJ, Burnet NG, Donovan T et al. Diffusion tensor imaging of brain tumors at 3T: a
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Sample Size:
493 Number of subjects at this centre 200
4.9b Number of subjects in entire study 200
49¢ Number of centres participating 1

For all study types (including pilot studies), justify the sample size on
scientific grounds.

410 If a formal sample size calculation was not pertormed, justify why a formal sample size
calculation is not required or possible; and give a rationale for the proposed number of subjects.

=

The MRI data from the patients and volunteers will form the basis for a clinical
database. It is feasible to collect such data from 100 patients with frontal and temporal
lobe epilepsy and 100 healthy volunteers over a five-year period. This database will give
more information to surgeons to make clinical decisions better for their patients with
frontal and temporal lobe epilepsy.

OR

4 11a | If a formal sample size calculation was performed, complete the following:

4 11b | Alpha error and indicate if one- or two-
sided
4 11c | Statistical power

411d | Estimated value of outcome measure in
the CONTROL GROUP

4 11e | Difference which can be detected with
specified sample size

4 11f | Pnmary outcome measure

The HSREB ne longer requires the actual sample size calculation or sample size reference be
submitted to the HSREBE for clinical trials that require a “No Objection Letter” from Health Canada.
In lieu of providing the actual calculation investigators MUST provide a comprehensive rationale for
the sample size selected (Section 4.11g). However, the HSREB reserves the right to request the
calculation, formula or reference If it deems it necessary. Please note, investigators are encouraged
to submit the calculation and references whenever possible as it may aid the HSREB in its decision-
making.

411g | Inlieu of the actual sample size calculation, provide a comprehensive reason or rationale for the
choice of sample size, including reflections on the power of the study and when appropriate,
clinical jusfification.
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All other research studies in which a sample size calculation was done
must complete Sections 4.12a and 4.12b

4.12a | Sample Size Calculafion — give the actual calculation
=

412b | Sample Size Reference:

Give a reference for the formula or method used. If a table in a published source was used
instead of a calculation, provide the reference(s) and table reference numbers. If a sample size
calculator was used, provide a description of the software package used andfor the URL for
internet-based calculators.

413 Analysis - State how the data will be analyzed fo fulfil each objective or to test each hypothesis.
Please state specific primary and secondary end points if appropriate.

(1 page maximum-— adhere to page limitations))

—> MRI data will be compared qualitatively and quantitatively to the pathology findings
to demonstrate that multimodality MR is equivalent to pathology in distinguishing
epileptic areas in the brain. ROC analysis will be performed to compare the sensitivity
and specificity of the different MRI modalities to that of the current gold standard - the
histological analysis of the pathology report. The MRI data from the healthy volunteers
will also be compared qualitatively with that from patients with frontal or temporal lobe

epilepsy, to record any distinguishing features that might cause epileptic seizures.

SECTION 5 RESEARCH PARTICIPANTS

5.1 To assist the HSREB in determining vulnerability and risk indicate if the research specifically targets
or recruits the following persons: (check all that apply)

v Healthy Volunteers

v Patients

Pregnant women

v Minors (under 18)

Participants with language or comprehension barriers (e.g. illiterate, non-English speaking, dysphasic)
Employees or students of UWO or the institution where the study is being camied out

Incompetent or unconscious participants
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Institutionalized persons (e.g. prison, extended care facility)
Participants recruited in emergency or life-threatening situations or other very stressful situations

52a Will the study involve males AND females? YES v
NO
5.2b If NO, explain why only one gender is being selected. (e.g. condition under study is gender specific)
=
53a What is the age range of the participants? LOWER AGE LIMIT 48-16
UPPER AGE LIMIT 65
54 Participant Inclusion and Exclusion Criteria: List all inclusion/exclusion criteria and indicate with an
asterisk () those criteria which will be included in the Letter of Information.
9.4a Inclusion Criteria

==

1. Patients, male or female with history of frontal or temporal lobe epilepsy aged 40 16-65

years old.

2. For the healthy volunteers, no history of epilepsy or head injury.

3. Patients must have had comprehensive EEG studies to identify the site of their
epileptogenic region.

4. Women of childbearing potential must be using an acceptable method of birth control if

sexually active.

[ 5.4b | Exclusion Criteria
==
1. People with severe coexisting or terminal systemic disease.
2. People with history of ventricular arrhythmia, myocardial infarction, unstable angina,
decompensated congestive heart failure or any other acute, severe, uncontrollable or
sustained cardiovascular condition.
3. Claustrophobic subjects.
4. People with pacemakers or other electronic implants
5. People who have had an operation where a metallic implant was used (i.e. clips, pins,
staples, efc)
6. People who are welders, military or armed forces personnel if skeletal survey reveals
metallic particles.
7. People injured by a metallic object that was not removed.
8. People who are pregnant or trying to conceive.
9. People who have an immediately evident need for surgery.
10. People with pre-existing medical conditions (e.g. significant renal or hepatic disease)
which, in the investigator's opinion, may interfere with the patient's suitability and
participation in the study.

| 55a | Are these parficipanis also taking part in other research? | YES | |
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If you discover that a person is already participating in another study and

your study involves any type of medical or physical procedure, it is NO

recommended that you contact the other study’s principal investigator to
ensure that enrollment in your study will not disadvantage the participant
Some climical rials prohibit participation in more than one study even
though there is no risk or medical contraindication.

UNKNOWN v

5.5b If YES or UNKNOWN, explain any risks associated with participafion in multiple studies.

= There are no known risks to the patient or healthy volunteer in participating in other
research studies.

SECTION 6 RESEARCH PROCEDURES AND PATIENT CARE
Note: All research costs must be covered by research funds.

6.1 Indicate which of the following interventions, testing or procedures are to be performed on the human
participants as part of this research study.
Drugs or Natural Products Analysis of existing data
Devices Analysis of existing biological specimens
Radiation Cognitive or perceptual experiment
Magnetic Resonance Imaging | v Chart or document review
PET Scans Evaluation of program or services
Surgery Observation of behaviour
Non-surgical manipulation (e.g. physiotherapy) Interview/surveylquestionnaire/diaries
Collection of blood Audio or video taping
. . . Gene therapy - Ifthe study uses a gene transfer vector,
Non-invasive physical measuremfants the vector is mnnga'ed to be aycrr.g arﬂgenmsrbe repoted in
(e.g. BP, weight} dug section.
Collection of other bodily materials or tissues Other

6.2a Describe the standard of care for the condition under study if the study involves | Not applicable
patient care.

==

Standard of care for patients with epilepsy undergoing surgery for frontal or temporal
lobectomy involves magnetic resonance imaging at 1.5 Tesla magnet field strength. The MR
imaging includes T1 and T2-weighted imaging, and sometimes Diffusion Tensor Imaging
(DTI) and functional MRI (fMRI} if the neurosurgeon requests them.

6.2b List all procedures, tests, drugs etc. utilized for the purpose of this study which are not part of
ordinarily accepted care of the participant and which are being done for research purposes only. If
additional or extended hospitalization or outpatient visits are required include the number of days or
visits.

= The research part of this study is the addition of 3 and 7 Tesla Magnetic Resonance
Imaging. The scanners operate under an Investigational Testing Authorization from Health
Canada and operating parameters adhere to current FDA and IEC guidelines. There will be
required one or two sessions of approximately 1 hour each.
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Complete the chart below and describe all drugs or natural products that will
be used in the study. If an investigational drug or natural product is being used
submit one copy of the Investigator's Brochure or for approved drugs under study in
this protocol submit Product Monograph — this document will be refained by the Office Not applicable:
6.3 of Research Ethics. Expand chart as required. ) ) No drugs used | ¥
If the study uses a gene transfer vector, the vector is comsidered to be a drug and must :
be reported in this section. in study
If a contrast agent is being used during imaging it should be listed below:
STATUS
DRUG or NATURAL PRODUCT NAME DOSE Investigational
(& IND number if appropriate) Marketed
Cleared New Drug
64 Complete the chart below and describe all devices that are being assessed in | Mot applicable:
the study. If investigational device is being usad provids one copy of the MNo devices v
Investigator's Brochure — this documsnt will be retained by the Office of Ressarch under study
Ethics. Expand chart as required.
DEVICE NAME STATUS
Investigational
Approved

If radiclogical testing or therapy (including Xray, CT, MR, ultrasound etc) is being used, researchers may find
the following website a useful resource in determining the appropriate language for Informed Consent
documentation to explain these procedures and their risks o parficipants_http:/iwww.radiologyinto.org/

6.9a Will any radioactive material be used? YES
NO v
6.59b [f YES, describe the Radicisotopes, how they will be infroduced into the body and provide an
assessment of risk.
=
6.6a Will the participant be exposed to x-rays? YES
NO v
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6.6b If YES, describe the X-ray Exposure, describe the assessment of risk and give the dose equivalents
({background radiation).

=

6.7a Will any Magnefic Resonance Imaging (MR} or Positron Emission Tomography YES v
(PET) scans be used? NO

6.7h If YES indicate the type of machine (e.g. 3T); describe the exposure and give an assessment of nsk.

= The study will utilize a 3T GE 750 or a 3T Siemens Tim Trio, and a Varan/Siemens 7T
human MRI system. The risks to participants in this study are minimal. To date, in the
absence of ferromagnetic materials, there has been no replicated evidence of specific acute
or cumulative health hazards associated with magnetic field exposure as collected from
static fields up to 8 Tesla. Safety concerns also exist due to (i) specific absorption rate
(SAR) of power to tissue from coils producing RF fields, (i) time varying magnetic field rate
of change from gradient coils (dB/dt) and (jii) sound pressure levels (SPL) from MRI gradient
coils. The 7 Tesla MRI system at Robarts is equipped with all the safety monitoring systems,
equivalent fo the 3 Tesla Siemens Tim Trio commercial clinical system, which ensure that
levels of SAR, dB/dt and sound pressure level are not exceeded and pose an insignificant
risk to human subjects.

M.B. If an MR is being used the following wording MUST be included in the Informed Consent documentation.
Additional wording is required for MRI's on children - see HSREB Guideline 2-G-004 (formerly Appendix 3)
hitp:/iwww.uwo.calresearch/ethics/imed/hsreb-guidelines.htm

“The Food & Drug Administration (USA) has indicated that for clinical diagnosis an ‘insignificant’ nisk is
associated with human MR exposure at the intensities used in this project. Current Canadian guidelines follow
the USA guidelines. Although very rare, injury and deaths have occurred in MRI units from unsecured metal
objects being drawn at high speeds into the magnet or from internal body metal fragments of which the subject
was unaware or had not informed MRI staff. To minimize this latter possibility it is essential that you complete a
screening questionnaire. Other remote but potential nisks involve fissue bums and temporary hearing loss from
the loud noise inside the magnet. The latter can be avoided with ear headphone protection that also allows
continuous communication between the subject and staff during the study.

MRI exclusion criteria

If you have any history of head or eye injury involving metal fragments, if you have ever worked in a metal shop
or been a soldier, if you have some type of implanted elecirical device (such as a cardiac pacemaker), If you
have severe heart disease (including susceptibility to arrhythmias), if you are wearing metal braces on your
teeth, or [for women)] if you could be pregnant, or have an intrauterine device, you should not have an MR
scan.”

SECTION 7 BIOLOGICAL SPECIMENS TO BE COLLECTED FROM SUBJECTS

7.4a | Are biclogical specimens (2.g. blood, tissue, muscle biopsies or fumor samples) | vES v

to be taken or analyzed for the purposes of this research protocol? NO
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71b Are any biological specimens (blood, fissue etc.) being taken for future genetic YES

testing or other unspecified testing or studies?
N.B. If YES, a separate information/consent document will be required. NO v

[ If YES to either 7.1a or 7.1b complete the balance of this section.

T2a Describe what specimens will be taken and what they will be used for.
In the case of blood samples also provide the total amount of blood that will be taken.

==
Resected Temporal lobes from 50 patients who have undergone temporal lobectomy for
relief of intractable epilepsy.

T2b Indicate how and when the specimen will be collected and by whom. Describe facilities and procedures
to protect the physical comfort and safety of the participants from whom samples will be faken. In the
case of invasive sampling e.g. taking blood, biopsies indicate who will take the sample and give their
gualifications to do so.

==

The specimens will be harvested by each patient's Neurosurgeon during standard care
temporal lobectomy for relief of intractable epilepsy. All normal hospital procedures will be
followed. These specimens normally go straight to pathology for clinical histopathological
analysis, but we have obtained permission from the Tissue Use Committee in the past to
image these specimens in the 94T MRI immediately prior to the pathology exam, and we
are currently applying for this same permission.

7.2c | Explain who will contral or own the specimens?

=
The specimens will be owned and controlled by the hospital, as standard post-operative
pathology specimens.

7.2d | Explain how and where the specimens will be stored.

==
The specimens will be owned and controlled by the hospital, as standard post-operative
pathology specimens.

722 | Describe how long the specimens will be retained and how they will be destroyed.

=
The specimens will be owned and controlled by the hospital, as standard post-operative
pathology specimens.

73a | What was the original purpose or use of the Collected specifically for research purposes

tissue or specimens?
Originally collected for diagnostic purposes | v

No purpose or use - unwanted or discarded
tissue or biomaterials
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73b | The subsequent use of tissue or biomaterials (except blood) originally collacted for diagnostic
purposes must, be approved by the Department of Pathology Tissue Use Committee prior to
submission to the HSREB and a copy of their approval appended to this form. If the Tissue Committee
approval is not available at the time of submission to the HSREB, ethics approval will be withheld until
a copy of Tissue Committee approval is received.

Tissue Use Committee approval Mot applicable

Pending | ¥

Approval attached

SECTION 8 QUESTIONNAIRES. FORMS & OTHER DATA TO BE USED IN STUDY

Questionnaires, forms, assessment forms, scales, interviews, surveys and diaries etc.

8.1 In the chart below list all questionnaires and forms etc. that will be used in the study and indicate who
will be completing or administering the form. (e.g. subject , interviewer, nurse, spouse, caregiver,
physician etc). EXpand chart as required.

Attach a copy of the data collection forms. E.g. Chart abstraction sheets, guestionnaires, surveys,
interview outlines etc. If you will be using standard, previously validated or widely accepted
instruments provide FIVE (5) copies. If the instruments have been developed or adapted for this
project, provide SEVENTEEN (17) copies. Do not insert copies of instruments in this chart; append
them at the end of the protocol submission form.

If there are no actual forms, you must append a comprehensive list of data to be collected or fopics fo
be covered.

TITLE OF QUESTIONNAIRE, SURVEY, SCALE, DATA COLLECTIONFORM | g [ TRl
ETC. (do not insert the questions or actual instrument here, append to the end of | oy ADMINISTER THE
the submission) Adapted | FORM?
82 Indicate Patient HOSPITAL chart or clinical record

all

Other HOSPITAL departmental records e.g. Pharmacy, Physiotherapy, Laboratory

Sources Directly from research parficipant or other informant

of data NON-HOSPITAL clinician records e.. Family Physician office

MNON-HOSPITAL laboratories or freatment sites e.g. physiotherapy clinic, laboratory

Departmental or clinic (clinical) database

Other (specify}

1.5,3,and 7 Tesla MRl data |

(1.5T is the standard clinical MRI that patients undergo as part
of their preoperative care)
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SECTION 8 DECEPTION OR PARTIAL DISCLOSURE TO EE USED IN THE STUDY

9.1a Do any of the procedures in this study include the use of deception or partial
disclosure of informafion to parficipants? YES
This section refers to instances of deliberate deception or the withholding of key

informafion that may influence a pariicipant’s performance or responses.
Deception does not include randomization, double blind or placebo controlled NO v
procedures unless the subject is not told that these procedures will be used.

9.1b If YES, provide a rationale for the planned deception or pariial disclosure.

9.1c If YES, describe the procedures for a) debnefing the participants and b) giving them a second
opportunity fo consent to parficipate after debriefing. If debriefing and reconsent are not viable options
please explain.

SECTION 10 RISKS AND BENEFITS OF THE RESEARCH

RISKS & DISCOMFORTS: Discuss the overall risks of the proposed research, and specify the
particular risks and discomforts associated with each research procedure, drug test, or other aspect of
10.1a | the protocol, including combinations of these. Consider privacy, confidentiality, psychological,
emotional, social, economic etc. nsks and stressors. Risks in clinical tnals are sometimes more easily
described in terms of therapeutic or non-therapeutic risks.

==

The risks to participants in this study are minimal. Magnetic resonance imaging
employs strong static magnetic fields along with switching gradient and rapidly oscillating
radio frequency (RF) fields to obfain tissue specific information from the spin properties in
nuclei of different molecules. MRI is a routine test done on millions of North Americans
every year with well over 150 million studies performed since the early 1980s. This study
utilizes a static magnetic field strength of 1.5 Tesla, 3 Tesla and 7 Tesla. With 12 years
experience of human imaging at 4 Tesla in our laboratory at the Robarts Research Institute
and with over 10 years experience with human imaging at 7 Tesla and higher worldwide
(University of Minnesota — 7T, 9.4T, Ohio State University — 8T, University of lllinois — 9.4T)
there have been no serious side effects documented.

To date, in the absence of feromagnetic materials, there has been no replicated
evidence of specific acute or cumulative health hazards associated with magnetic field
exposure as collected from static fields up to 8 Tesla. As a result of these findings, the
Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices as
issued by the FDA in July 2003 has issued a revision increasing the limit of the static
magnetic field strength to 8 Tesla for most populations superseding the previous document
Guidance for Magnetic Resonance Diagnostic Devices — Criteria for Significant Risk
Investigations, issued September 1997. The aforementioned FDA document also mandates
three other parameters for human safety, that being (i) specific absorption rate (SAR) of
power to tissue from coils producing RF fields, (i) time varying magnetic field rate of change
from gradient coils (dB/dt) and (iii) sound pressure level (SPL) also produced from MRI
gradient coils.
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Acoustic noise level may increase as magnetic field increases. However, the noise
level is also dependent on the specific data acquisition techniques that are used. In this
study, acoustic noise is well below the FDA guidelines and subjects are given earplugs to
reduce any annoyance, our safety monitoring systems are the same as those found on the
1.5 Tesla GE scanners at LHSC-UC. Subjects are also monitored by video camera and
intercom throughout each study.

10.1b | Describe facilities and procedures fo profect the physical and mental health, comfort and safety of the
participants.

==

The 7 Tesla MRI at Robarts is equipped with all the safety monitoring systems, equivalent to
3 Tesla GE 750 or 3Tesla Siemens Tim Trio commercial clinical system, which ensure that
levels of SAR, dB/dt and sound pressure level not exceeded and pose an insignificant risk
to human subject. The subject will also be able to communicate with the MRI operator
during the entire study in the event he/she becomes uncomfortable or wishes to terminate
participation in the study. The human MRI labs at Robarts also have full code support
through the facilities at LHSC in the event of a cardiac arrest (ie. Code Blug).

Risk of seizure in the magnet:

Epilepsy patients may have a seizure during scanning. During focally originating seizures,
patients are usually awake with some altered awareness, but are not in contact with others
in their environment and do not respond normally to instructions or questions. They often
stare into space and either remain motionless or engage in repetitive behaviors called
automatisms. Complex partial seizures typically last less than three minutes and may be
immediately preceded by simple partial seizures. Afterward, these patients experience
postictal changes, often characterized by somnolence, confusion or headache for several
minutes. The patient has no memory of what took place during the seizures other than,
perhaps, the aura. Focal originating seizures are usually self limiting. Some seizures may
progress to generalized tonic seizures. The likelihood that the patient will have a seizure in
the magnet is small because of the selection criteria. However, there is a possibility that the
patient can have a seizure in the magnet, as can happen at any time and will depend on the
frequency of the seizure activity for such particular patient. However, the potential for injury
to the patient is minimal, since there is no significant abnormal movement that can lead to
injury. In addition, there is a "help” call button in the MR scanner; if the patient feels any
abnormal aura, hefshe can press on the button to notify us before he/she will be removed
from the scanner and the epileptogenist will attend to him/her. The clinician will make a
decision to terminate the study and treat the patient. Patients are routinely treated with fast
acting anti-convulsants (e.g. sublingual lorazepam 1-2 mg or buccal midazolam 10 magj) if
the seizure lasts for longer than two minutes. Oxygen and a crash cart are available in the
MR suite if needed. Also, the Emergency Room of the London Health Sciences Centre is
less than 300 meters from the Robarts MR suite, therefore we can transfer the patient there
if aggressive treatment is needed.
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BENEFITS: Discuss any possible direct benefits to the research pariicipants as a result of their
participation in the study. Please note that monetary compensation is not considered a benefit. If
applicable, discuss possible benefits fo society at large or the patient/participant population being
studied.

10.2

==

There will likely be no direct benefit to the participants in this study. The sequences could be
helpful in localizing the epileptogenic focus in frontal lobe epilepsy that would affect each
patient's management.

10.3 | Delays or withholding ot standard care YES NO
Are any standard therapies or diagnostic procedures to be withheld during the
10.3a v
course of the study?
10.3b | Will a placebo be used in lieu of standard care? v
10.3¢ Will management or treatment of the participant's condition ke prolonged or delayed v
] because of the research?

If YES to any of the above, discuss the potential risks and benefits to the participants and provide a

103d rationale why standard care must be withheld or delayed.
=
10.4a | If the research subject islor becomes pregnant, breastfeeds a child or fathers a YES v

child while in the study, does their participation in the study pose a possible nisk

{0 the foetus or chikd? NO

104b | If YES, please discuss these risks and indicate what monitoring will be undertaken during the study
and following the study conclusion?

N.E. this information must be included in the participant’s Information & Consent documentation and if
access to the records of the female partner and her child is required, separate consent forms must be
signed by the pregnant pariner at the start of the study or whenever they become a pariner to the
research participant. These documents should be submitted to the HSREE at the same time as the
primary informed consent documentation. (See HSREB Guideline 2-G-028 Female Partner)

=

The inclusion criteria state that women of childbearing age who are sexually active must use
an effective form of birth control to ensure they are not pregnant when they undergo MRI
Scanning. As MRI scanning is part of standard care for these patients, they will be well
aware of the risks and will be monitored as part of standard care practices.

10.4c | If the research subject fathers a child while in the study, will access to the health
records of the ‘pregnant’ partner and/or her child be required andfor will the
woman or child be monitored by this study duning andlor after the pregnancy? YES

It YES, separate informed consent documentation must be provided to and
signed by the partner at the start of the study or whenever they become a
partner to the research participant. These documents should be submitted to NO v
the HSREB for approval at the same time as the main informed consent
documentafion. (See HSREB Guideline 2-G-028 Female Partner)
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10.5a

The TCPS requires that researchers propose a continuing v
review process appropriate for the nisk of this project. The ANNUAL (defaul)

higher the risk the more frequent the review_ Please indicate EVERY & MONTHS

your recommendation as to the frequency of the REB's
continuing review. At  minimum, all protocols will require the | = e 3 MONTHS

completion of the REB’s Surveillance Report Form annually. EVERY MONTH

10.5b | If the risks associated with this project are such that they warrant more than an annual review please
discuss what type of reports in addition to the usual REB Surveillance Report that you will provide the
REB. e g. DSMB reports, interim analyses efc.
=
106a | Is there a formal Data Safety Monitoring Committee (or comparable body) in YES
place for this study? NO v
106b | If YES, is this Committee independent of the study Sponsor(s)? |.e. Isitan YES
external committee able to provide an unbiased assessment? NO
10.6c W ] ] ]
**If YES - please note you must submit the Data Safety Monitoring Committee report(s) to the
Office of Research Ethics using Form 2-F-014™
10.7fa | Are there plans to conduct formal Intenm Analyses at prescribed times during YES
the study? NO v
10.7b | f YES, indicate when these will take place and if they will be conducted by persons independent of the
study sponsor.
=

SECTION 11 COMPENSATION AND COSTS

11.1a | Will the participants be compensated or reimbursed for their time, expenses YES v
andlor contribution to the research? NO

11.1b | If YES, provide details. Specify the amount, what the compensation or reimbursement is for, and how
payment will be determined for participants who do not complete the study. This informafion must be
included in the Information/Consent documentation.
At a minimum, protocols funded by industrial sponsors are expected to cover parking and other
incidental costs.

=

Participants will be reimbursed $20 for any expenses incurred as a result of this study, such
as travel and parking.

112a | Are the participants likely to incur any additional expenses as a resulf of their YES
participation in this study? NO I
11.2b | FYES, describe

If YES, this information must be included in the Information/Consent documentation.
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=
11.3a | If the drug is marketed before a tnal is complete will study participants be YES
required to pay for the drugs if they want to continue with the study? NO
If YES, this information must be included in the Informafion/Consent NOT P
documentafion. APPLICABLE
11.3b | If YES, give an estimate of the costs to the patient
=

SECTION 12 PRIVACY & CONFIDENTIALITY ISSUES

LHSC and SJHC require that all persons accessing patient information complete the hospital Privacy
& Confidentiality Education Program. Contact the LHSC-SJHC Privacy Office (x32996) for more
information.

If research data are lost, stolen or accessed inappropriately, it must be reported to the HSREB
immediately. If the data relate to hospital patients or records, a report must also be made to the
haspital’s Privacy Office AND Lawson Administration (x77749).

12.1a

Indicate if any of the following
personal identitiers will be
collected for research purposes
during the course of the
research. (Excluding the
consent form which will contain
the participant’s name.)

If any are to be collected,
indicate which will be retained
with the research data set or
biclogical specimen once data
or biological specimen collection
Is completa?

Indicate “Retained” if there will
be a Master list kept after data
collection is complete that links
participant identifiers to de-
identified data.

Researchers may find it helpful to consult the CIHR Best
Practices for Protecting Privacy in Health Research.

http:iiwww.cihr-irsc.gc.cale/29138.html

Collected
Retained

Mo personal identifiers

Full or Partial Name or Initials

Location or Contact info:
address, phone, postal code etc

Full or Partial Date of Birth or Death

Personal Numbers: e.g. OHIP Health Card, SIN

Institufional / Hospital Chart or Record #

[<

Facilities and service providers

Other personal idenfifiers(specify)

12.1b

IF ANY OF THE ABOVE IDENTIFIERS WILL BE COLLECTED give the level of detail to be collected.

E.g. full name or initials only; full date of birth or year only; full postal address or 3 digit postal code;

names of service providers or type of institufion only etc.
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= The full names and the Hospital Numbers will be collected on a Master List for each
patient, which links them to there study code number. No personal identifiers will be

collected for the healthy volunteers.

121¢ | IF ANY OF THE ABOVE IDENTIFIERS WILL BE COLLECTED provide a comprehensive rationale
explaining why it Is necessary to collect this information.

IF ANY OF THE ABOVE IDENTIFIERS WILL BE RETAINED once data collection is complete provide
a comprehensive rationale explaining why it is necessary to retain this information. (Including the
refention of master lists that link parficipant identifiers with de-idenfified data.}

Acceptable reasons will generally be limited to the following purpose and invesfigators will need to
defend their reasons for collecting and/or retaining identifiers and how the identifiers will be used to
achieve the stated purpose.

+ Contact or linkage for follow up or ongoing data collection

* Provide data for clinical menitoring of the participant

Enable data to be withdrawn from data set if participant withdraws consent

+ Return individual results to participant

* Conduct a dafa linkage with a high degree of accuracy

Do not just copy one of the above reasons into the box below. Investigators must, in their own words,
explain fully and defend their reasons for collecting andlor retaining identifiers and explain how the
idenfifiers will be used to achieve the stated purpose.

= The full names and the Hospital Numbers of each patient will be linked to their study
codes on a Master List in order to access their clinical data in their hospital charts.

122 In addition to the UWO HSREB, identify all agencies or individuals other than the local research team
who, for monitoring or auditing purposes, may require access to identifiable or confidential data
collected for this research or databaselregistry/bank, now or in the future. e.g. the Sponsor(s),CRO’s,
regulatory agencies such as Health Canada or the FDA efc.

Include the following sentence into all recruitment informed consent matenals where the participant's
identity is known and access to the records or follow up by the HSREB is possible.

“Representatives of The University of Westem Ontario Health Sciences Research Ethics Board may
contact you or require access to your study-related records to monitor the conduct of the research”

= None

12.3 Describe the procedures to be used for preserving the confidentiality of data or specimens both duning

the data or specimen collection and in the release of the findings. e.g. all identifiers removed once data
collected, data coded by unique identifiers with master list held separate from data etc. If a device has

a senal or code number that will allow the sponsor o identify individual patients this should be noted in
the Letter of Information.

==

All identifiers will be removed from the MRI data, and the data from individual patients will
only be identified by a study code number. The full names and the Hospital Numbers of
each patient will be linked to their study codes on a Master List, so that their clinical data
can be accessed. The Master List will be kept in a separate, secure location. No personal
identifiers will be collected for the healthy volunteers.
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12 4a | Will anyone other than employees, clinical staff or students of the institution where YES
the patients’ original records or samples are located, approach participants or have
direct access to a subject or their records for purposes of collecting data or NO | ¥
conducting this research?

12.4b | If YES indicate who these people are, what their role is, why they need access and what safeguards
have been instituted to ensure they adhere to acceptable security pracfices and maintain confidentiality.

125a | What security measures are in place locally to ensure protection of the data, records or specimens?

+ Describe local procedures for securing and storing written records, videotapes, computer discs,
recordings and questionnaires, specimens efc.

* Provide details as fo where the data or specimens will be located locally and who will have access
fo them.

* Describe what local organizational, technological and physical measures are in place to protect
security of data, specimens, servers and portable media or devices? {locked doors, coded
restricted access, encrypfion etc)

At a minimum it is required that all hard copy records be maintained in secure offices and locked filing

cabinets and all electronic records and data sets will be password protected and access limited fo

approved persons only. Enhanced security measures such as encryption should also be considered.

Master lists must be stored separately from the data. E.g. data files and the master list should not be
stored on the same portable device.

:tgﬁlca.te which 0‘[ the {ChE(:ll all that appljr]
m e::ﬂur:g 35::-;; ngh as All hospital and n_asearrl:h staff accessing lpqﬁent informatinn have v
completed the hospital Privacy & Confidentiality Education Program

been underiaken to Data will be encrypted

gg;mrdtsme data and Data will be password protected

Data will be stored on a hospital or other institutional network drive that

has firewalls and security measures in place

Hard copy records will be stored in a locked cabinet in a secure location

Access to records and data limited o authorized persons

All identifiers to be removed once data collectedivenfied

Master list linking data with identifiers stored separately from data.

Consultation with hospital Privacy Office or LHRI Research Officere | .

privacy and security issues

AN ENEENEEN

1250 | Describe these measuras in more detail.

= Only the patient's study code will be input in the original source data from the MRI
machines. Their name or other personal identifiers will not be used at all. Dr. Mirsattari
will keep the Master List in a locked filing cabinet in his office.

1286 Indicate how long the specimens and/or data will be retained and if not being kept indefinitely; describe
the method of disposal or destruction.

= The de-identified MR images will be stored indefinitely as electronic files, as they will

form part of an engeing-clinicatl database.
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12.7a

Are participant data or biological specimens being sent or taken off-site to a YES

sponsor, co-investigator or cenfral data collection site or registry?
MNB a formal contract or data or matenal transfer agreement must be in place

between the local institufion and the recipient before data or specimens are NO v
sent.

12.7b | Will data be taken off site for analyses? E.g. In the case of patient information is YES
there plans for the researcher to conduct analyses away from the site? E.g. at NO v
home?

It YES to either 12.7a or 12.7b complete the balance of this section.

It NO go to Section 13.

12.8a | Will personal identifiers be included with the data or specimens sent or taken oft- YES
site?

Mote: Data and specimens that leave the site should not include the patient's name
or other identifiers unless there is a compelling reason. Data that includes
idenfrfizble personal health information MUST be encrypted before being sent or NO
taken off site or utilized via secure remote access. Master lists must be stored
separately from the data. E.g. data files and the master list should not be stored on
the same poriable device.

12.8b

If YES, indicate which, if any, of Full or Parfial Name or Initials

these participant identifiers will be Contact info: address, phone, postal code efc

included with the data or specimens Date of Birth or Death

sent off-site? Personal Numbers: e.g. OHIP Health Card, SIN

Institutional / Hospital Chart or Record #

12.8¢

IF ANY OF THE ABOVE IDENTIFIERS WILL BE SENT OR TAKEN OFF-SITE provide a
comprehensive raflonale explaining why it is necessary for this information to go off-site. Acceptable
reasons will generally be limited to the following purpose and investigators will need fo defend their
reasons for sending identifiers off-site and how they will be used fo achieve the purpose stated.

¢ Contact or linkage for follow up or ongoing data collection

* Provide data for clinical monitoring of the participant

¢ Enable data to be withdrawn from data set if participant withdraws consent

¢ Return individual results to participant

¢ Conduct a data linkage with a high degree of accuracy

¢ Data analyses

Do not just copy one of the above reasons into the box below. Investigators must defend their reasons
for collecting and/or retaining identifiers and explain how the identifiers will be used to achieve the
stated purpose.

12.5d

If MO, will there be a code or identifiers Mo personal identifiers sentftaken off-site but data
that allow linkage of the data andlor andlor specimens are coded and linkage is possible.

specimens back to the study and/or the | Data and/or specimens completely de-identified and
research participant? no linkage is maintained.
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12.9e

If a LINKAGE IS POSSIBLE describe how the data andfor specimens are fo be coded fo allow the
linkage and who will retain a master list linking participants and their data.
Mote that in most instances the master list should remain in a secure location at the local site.

=
129f | Indicate which of the (check all that apply)
following security _
measures will be/has Data will be encrypted
been undertaken to Data will be password protected
protect the data and Data will be de-identified
records Data will be shipped by courer or other bonded shipping method
Data will be personally delivered by researcher or research staff or
picked up by co-investigator or sponsor
All identifiers to be removed prior to shipping
Master list linking data with identifiers retained at local site.
Data sent by fax to a secure location
1210 | If YES to either 12.7a or 12.7h, indicate where data, records or specimens are sent or taken. Be as
specific as possible.
=
1211 | I YES, describe how data or specimens are sent or taken oft-site or accessed from off-site? (E.g.
hard copy, fax, electronic transmission emailiweb site, portable media devices, secure remote access,
courier etc.) and describe fransmission safeguards and secunty measures 1e. Are data encrypted
prior to transmission? If yes describe level of encryption? Physical secunty (private faxes, shipping of
disks etc)?
Mote that data containing identifiable personal health information MUST be encrypted to an appropniate
level.
=
1212 | I YES, Describe the off-site procedures for securing and storing written records, videotapes,
computer discs, recordings and questionnaires, data and specimens.
=
1213 | If YES, indicate how long the data or specimens will be retained off-site and describe the method of
disposal if data or specimens are not returnad to the local site or not retained indefinitely.
=
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SECTION 13 PARTICIPANT RECRUITMENT & CONSENT PROCESS

Disclaimer: The Review Board does not assess the legal validity of the consent form nor does it provide any
other legal advice.

131 | Describe the method of recruiting and sampling participants.

= Epileptic patients with suggested frontal or temporal epileptogenic regions by clinical data
{semiology), neurclogical examination or/and EEG findings, will be recruited from the
Epilepsy Unit at London Health Sciences Centre (LHSC) or the epilepsy out-patient clinics
at LHSC. Their routine clinical investigations including neurological examination and EEG
will be reviewed by the study epileptologist (Dr. Mirsattari).

Patients with other active neurclogical or systemic disease that would impair their ability to
participate in the study or data interpretation will be excluded. A control group of healthy
adult volunteers (aged 18-65) will undergo the MRI examinations only. Written informed
consent will be obtained from all patients and volunteers prior to testing.

132 Identify who will be contacting the potenfial participants to recruit them. In the case of patients, initial
contact must be made by a member of the patient's health care team, circle of care or someone the
patient would expect fo have relevant information about them.

==

Dr. Mirsattari, the epileptologist, will be the person who contacts patients to recruit them for
the study. The group of healthy volunteers will be recruited by advertisements at Robarts
Research Institute, and the University of Western Ontario.

13.3 [ Indicate where the research will be conducted.

=

The standard clinical care of the patients will be performed at LHSC-UH, but the research
MR Imaging for patients and volunteers will be carried out in the MRI suites at Robarts
Research Institute.

134 Will posters, advertisements, public notices or telephone solicitation be used YES v

to recruit or notify participants? NO

It YES, provide five (5) copies of audio announcements or telephone recuitment scipts and all hardcopy
adveriisements, nofices and announcements that will be used. If video or electronic media are used e.g. video
tape or CIr's provide only one (1) capy of tape or CD. This will be retained by the Office of Research Ethics and
will not be returned to the lnvestigator.

13.5 What type of Explicit written consent — use of formal consent documentation | v
consent(s) to Explicit verbal consent e.g. telephone recruitment
participate was or Explicit consent - other
will be obtained e.g. completion of guestionnaire, survey evidence of consent
from participants? Passive consent e.g. notices posted with option to opt out

Prior consent e.g. other research consent
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13.6 If written consent cannot be obtained from potential participants prior to the intervention or written
consent is not appropriate, provide a justification. (E.g. complefion of a questionnaire in a survey study
15 evidence of compliance; emergency health situation etc.)

13.7a | Will minors or persons not able fo consent for themselves be included in the YES v
study? NO
13.7b | If YES, descnbe the consent process and indicate who will be asked to consent on their behalf and
discuss what safeguards will be employed to ensure the nights of the research participant are
protected. Whether or not a separate assent form is used, investigators and parents or guardians
should discuss the study with the person (when appropriate) and explain exactly what will happen and
what the person’s rights are. In certain circumstances, the REB may find it acceptable for mature or
emancipated minors to give consent without also requining consent from parents or guardians.

=

The lower age limit is age 48 16 as there are some younger patients with epilepsy
scheduled for surgery and it would be useful to have data from these patients. The parents
or legal guardian will be asked to consent on behalf of their children in consultation with
their neurosurgeon. No person under the age of 18 will be recruited for the control group of
healthy volunteers.

138 Briefly describe plans (if any) for provision of feedback to participants.

There is no feedback planned to be provided for participants.

139 Describe opportunities (if any) available to parficipants to consent to future, as | Not v
yet unknown, research on their data or specimens. Applicable

In the case of de-identified data this is not an option, but researchers need fo
think carefully about the logistics and likelihood of being able to contact
participants in the future if they promise contact for future consent.
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1310 | Describe what opportunities (if any) will be available to participants to withdraw | Not v
their data or specimens in the future. Applicable

Please note that it may be necessary to deny parficipants the night to withdraw
data or specimens to profect the integnty of research already using the data. If
this Is the case, this limitation on their ability to withdraw must be made clear in
the Letter of Information.

In the case of de-identified data withdrawal is not an option.

1311 | Attach a copy of all documentation (separate from the example in the Sponsor documents) that will be
used to inform and obtain consent from the potential participants about the research. Separate
Information/Consent documents or a combined Information/Consent document may be used. Wording
regarding the parficipant’s consent must comply with the UWO guidelines, be relevant to the Canadian
and Ontario scene and participants must be given a copy of the Letter of Information or combined
Information/Consent document to keep for reference.

THE CHECKLIST OM NEXT PAGE IS DESIGNED TO ASSIST YOU IN THE PREPARATION OF THE
INFORMED CONSENT DOCUMENTATION. WHEN USED IN CONJUNCTION WITH THE
GUIDELINES FOR PREPARATION OF INFORMED CONSENT DOCUMENTATION IT WILL
EMSURE YOUR MATERIALS MEET THE REE’s MINIMUM REQUIREMENTS.

CHECK THE DOCUMENTS CAREFULLY FOR COMPLETENESS. IT IS THE INVESTIGATOR'S
RESPONSIBILITY TO CORRECT ALL SPELLING OR GRAMMATICAL ERRORS AND ENSURE THE
DOCUMENTS MEET UWO HSREB SPECIFICATIONS BEFORE SUBMITTING THE PROTOCOL TO
THE HSREB. INCOMPLETE OR POORLY PREPARED CONSENT DOCUMENTATION IS A MAJOR
REASON WHY ETHICS APPROVAL IS DELAYED.

See Guideline 2-G-005 (formerly Appendix 4) on the following website.
http:iwww.uwo.ca/research/ethics/med/hsreb-guidelines.htm

If you can not, or do not want to include a ‘required’ item provide a rationale why.

=

These are the contact persons for participants who have questions regarding their rights and the conduct of the
research. The correct person must be inserted into this sentence and this phrase included in the Letter of
Information.

"It you have any questions about your rights as a research participant or the conduct of the study you
may contact...”

If participants are recruited from within Dr. Dawid Hill, Scientific Director, Lawson Health Research Instifute
the LHSC or SJHC system or research is | at

taking place at LHSC or SJHC sites

If participants recruited from sites other
than LHSC or SJHC and research not | The Office of Research Ethics at NN or by smail at

taking place at LHSC or SJHC sites. |
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CHECKLIST — INFORMATION & CONSENT DOCUMENTATION
To be used in conjunction with the Guidelines for preparation of Information & Consent
documentation. See 2-G-005 on the following website. hitp-lfwww uwo calressarch/ethics/medihsreb-guidelines him
HAVE YOU INCLUDED OR ADDRESSED THE FOLLOWING ISSUES?
Reguired Title of the research
Reguired Identity of researchers & sponsors
Reguired Invitation to participate in research
Reguired Informationiconsent documents addrassed to research participant
Reguired Provide summary explanation of research
Reguired Indicate number of participants — total & local
When appropriate Describg inclusion & exclusion criteria
Reguired Describe the research and any experimental procedures
Reguired Explain specific research technigues
Reguired Estimate of participant’s ime commitment
Required Location of the research
Reguired Describe Risks [ Harms / Benefits even if there are nong
When appropriate Discuss special risks re Pregnancies or breastfeeding
Reguired \Voluntary participation, can refuse to participate, withdraw from study at any time etc.
When appropriate Participation in concurrent or future studies?
When apprapriate Coliection of Specimens or Human Tissues (separale consent documentation
required for banking and urspecified future research)
When appropriate Notification of new findings to be provided
Reguired Discuss anonymity &for confidentiality of information
When appropriate Describe alternative treatments or opfions
Reguired Confact person(s) for participants re questions about study andior treatment and care
Reguired Contact person(s) for participants re subject rights
When appropriate Discuss compensation & costs to subjects
When appropriate Tell subject to ask if private health or life insurer will continue to cover
Required Mo waiver of rights
Reguired No indication of institutional approval
Reguired Statement that participant will receive copy of Information/consent document to keep
Reguired Non idenfification in publication of results
When appropriate Conflict of Interest declared
Reguired Consent statement as per UWO standard
Reguired Signatures for appropriate persons
Reguired Language Level - lay language, grade 8 level for general population
Formatting — pages numberad, appropriate type size, page layout, header/footer, headings etc.
Separate assent forms for children 7+ are optional and not " whatthe St.u“ = ?tﬁom —

) ) ) ) = why the child is eligible to pariicipate
always appropriate, but if used, should include these items. +procedures, what will happen
Include an assent form enly if it will enhance a child's » voluntary pariicipation. withdrawal
understanding of what they will have to do. It must be short *  risks discomiorts
and written in very simple language. Whether or not a = benefis
separate assent form is used, investigators and parents or »  contacts
guardians should discuss the study with the child and explain *  an invitation to ask questions
exactly what will happen and what the child's rights are. = signature
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